330 research outputs found

    Wavelet Based Color Image Compression and Mathematical Analysis of Sign Entropy Coding

    No full text
    International audienceOne of the advantages of the Discrete Wavelet Transform (DWT) compared to Fourier Transform (e.g. Discrete Cosine Transform DCT) is its ability to provide both spatial and frequency localization of image energy. However, WT coefficients, like DCT coefficients, are defined by magnitude as well as sign. While algorithms exist for the coding of wavelet coefficients magnitude, there are no efficient for coding their sign. In this paper, we propose a new method based on separate entropy coding of sign and magnitude of wavelet coefficients. The proposed method is applied to the standard color test images Lena, Peppers, and Mandrill. We have shown that sign information of wavelet coefficients as well for the luminance as for the chrominance, and the refinement information of the quantized wavelet coefficients may not be encoded by an estimated probability of 0.5. The proposed method is evaluated; the results obtained are compared to JPEG2000 and SPIHT codec. We have shown that the proposed method has significantly outperformed the JPEG2000 and SPIHT codec as well in terms of PSNR as in subjective quality. We have proved, by an original mathematical analysis of the entropy, that the proposed method uses a minimum bit allocation in the sign information coding

    Multiresolution source coding using entropy constrained dithered scalar quantization

    Get PDF
    In this paper, we build multiresolution source codes using entropy constrained dithered scalar quantizers. We demonstrate that for n-dimensional random vectors, dithering followed by uniform scalar quantization and then by entropy coding achieves performance close to the n-dimensional optimum for a multiresolution source code. Based on this result, we propose a practical code design algorithm and compare its performance with that of the set partitioning in hierarchical trees (SPIHT) algorithm on natural images

    Wavelet-Neural Network Based Image Compression System for Colour Images

    Get PDF
    There are many images used by human being, such as medical, satellite, telescope, painting, and graphic or animation generated by computer images. In order to use these images practically, image compression method has an essential role for transmission and storage purposes. In this research, a wavelet based image compression technique is used. There are various wavelet filters available. The selection of filters has considerable impact on the compression performance. The filter which is suitable for one image may not be the best for another. The image characteristics are expected to be parameters that can be used to select the available wavelet filter. The main objective of this research is to develop an automatic wavelet-based colour image compression system using neural network. The system should select the appropriate wavelet for the image compression based on the image features. In order to reach the main goal, this study observes the cause-effect relation of image features on the wavelet codec (compression-decompression) performance. The images are compressed by applying different families of wavelets. Statistical hypothesis testing by non parametric test is used to establish the cause-effect relation between image features and the wavelet codec performance measurements. The image features used are image gradient, namely image activity measurement (IAM) and spatial frequency (SF) values of each colour component. This research is also carried out to select the most appropriate wavelet for colour image compression, based on certain image features using artificial neural network (ANN) as a tool. The IAM and SF values are used as the input; therefore, the wavelet filters are used as the output or target in the network training. This research has asserted that there are the cause-effect relations between image features and the wavelet codec performance measurements. Furthermore, the study reveals that the parameters in this investigation can be used for the selection of appropriate wavelet filters. An automatic wavelet-based colour image compression system using neural network is developed. The system can give considerably good results

    Rate-Distortion Optimized Vector SPIHT for Wavelet Image Coding

    Get PDF
    In this paper, a novel image coding scheme using rate-distortion optimized vector quantization of wavelet coefficients is presented. A vector set partitioning algorithm is used to locate significant wavelet vectors which are classified into a number of classes based on their energies, thus reducing the complexity of the vector quantization. The set partitioning bits are reused to indicate the vector classification indices to save the bits for coding of the classification overhead. A set of codebooks with different sizes is designed for each class of vectors, and a Lagrangian optimization algorithm is employed to select an optimal codebook for each vector. The proposed coding scheme is capable of trading off between the number of bits used to code each vector and the corresponding distortion. Experimental results show that our proposed method outperforms other zerotree-structured embedded wavelet coding schemes such as SPIHT and SFQ, and is competitive with JPEG2000

    Error-resilient performance of Dirac video codec over packet-erasure channel

    Get PDF
    Video transmission over the wireless or wired network requires error-resilient mechanism since compressed video bitstreams are sensitive to transmission errors because of the use of predictive coding and variable length coding. This paper investigates the performance of a simple and low complexity error-resilient coding scheme which combines source and channel coding to protect compressed bitstream of wavelet-based Dirac video codec in the packet-erasure channel. By partitioning the wavelet transform coefficients of the motion-compensated residual frame into groups and independently processing each group using arithmetic and Forward Error Correction (FEC) coding, Dirac could achieves the robustness to transmission errors by giving the video quality which is gracefully decreasing over a range of packet loss rates up to 30% when compared with conventional FEC only methods. Simulation results also show that the proposed scheme using multiple partitions can achieve up to 10 dB PSNR gain over its existing un-partitioned format. This paper also investigates the error-resilient performance of the proposed scheme in comparison with H.264 over packet-erasure channel

    Novel Video Coder Using Multiwavelets

    Get PDF

    Scalable and perceptual audio compression

    Get PDF
    This thesis deals with scalable perceptual audio compression. Two scalable perceptual solutions as well as a scalable to lossless solution are proposed and investigated. One of the scalable perceptual solutions is built around sinusoidal modelling of the audio signal whilst the other is built on a transform coding paradigm. The scalable coders are shown to scale both in a waveform matching manner as well as a psychoacoustic manner. In order to measure the psychoacoustic scalability of the systems investigated in this thesis, the similarity between the original signal\u27s psychoacoustic parameters and that of the synthesized signal are compared. The psychoacoustic parameters used are loudness, sharpness, tonahty and roughness. This analysis technique is a novel method used in this thesis and it allows an insight into the perceptual distortion that has been introduced by any coder analyzed in this manner
    corecore