100,458 research outputs found

    English–Welsh cross-lingual embeddings

    Get PDF
    Cross-lingual embeddings are vector space representations where word translations tend to be co-located. These representations enable learning transfer across languages, thus bridging the gap between data-rich languages such as English and others. In this paper, we present and evaluate a suite of cross-lingual embeddings for the English–Welsh language pair. To train the bilingual embeddings, a Welsh corpus of approximately 145 M words was combined with an English Wikipedia corpus. We used a bilingual dictionary to frame the problem of learning bilingual mappings as a supervised machine learning task, where a word vector space is first learned independently on a monolingual corpus, after which a linear alignment strategy is applied to map the monolingual embeddings to a common bilingual vector space. Two approaches were used to learn monolingual embeddings, including word2vec and fastText. Three cross-language alignment strategies were explored, including cosine similarity, inverted softmax and cross-domain similarity local scaling (CSLS). We evaluated different combinations of these approaches using two tasks, bilingual dictionary induction, and cross-lingual sentiment analysis. The best results were achieved using monolingual fastText embeddings and the CSLS metric. We also demonstrated that by including a few automatically translated training documents, the performance of a cross-lingual text classifier for Welsh can increase by approximately 20 percent points

    Domain Adaptive Computational Models for Computer Vision

    Get PDF
    abstract: The widespread adoption of computer vision models is often constrained by the issue of domain mismatch. Models that are trained with data belonging to one distribution, perform poorly when tested with data from a different distribution. Variations in vision based data can be attributed to the following reasons, viz., differences in image quality (resolution, brightness, occlusion and color), changes in camera perspective, dissimilar backgrounds and an inherent diversity of the samples themselves. Machine learning techniques like transfer learning are employed to adapt computational models across distributions. Domain adaptation is a special case of transfer learning, where knowledge from a source domain is transferred to a target domain in the form of learned models and efficient feature representations. The dissertation outlines novel domain adaptation approaches across different feature spaces; (i) a linear Support Vector Machine model for domain alignment; (ii) a nonlinear kernel based approach that embeds domain-aligned data for enhanced classification; (iii) a hierarchical model implemented using deep learning, that estimates domain-aligned hash values for the source and target data, and (iv) a proposal for a feature selection technique to reduce cross-domain disparity. These adaptation procedures are tested and validated across a range of computer vision applications like object classification, facial expression recognition, digit recognition, and activity recognition. The dissertation also provides a unique perspective of domain adaptation literature from the point-of-view of linear, nonlinear and hierarchical feature spaces. The dissertation concludes with a discussion on the future directions for research that highlight the role of domain adaptation in an era of rapid advancements in artificial intelligence.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Transfer Learning for Speech and Language Processing

    Full text link
    Transfer learning is a vital technique that generalizes models trained for one setting or task to other settings or tasks. For example in speech recognition, an acoustic model trained for one language can be used to recognize speech in another language, with little or no re-training data. Transfer learning is closely related to multi-task learning (cross-lingual vs. multilingual), and is traditionally studied in the name of `model adaptation'. Recent advance in deep learning shows that transfer learning becomes much easier and more effective with high-level abstract features learned by deep models, and the `transfer' can be conducted not only between data distributions and data types, but also between model structures (e.g., shallow nets and deep nets) or even model types (e.g., Bayesian models and neural models). This review paper summarizes some recent prominent research towards this direction, particularly for speech and language processing. We also report some results from our group and highlight the potential of this very interesting research field.Comment: 13 pages, APSIPA 201
    • …
    corecore