249 research outputs found

    Mobile Robot Path Planning using Q-Learning with Guided Distance and Moving Target Concept

    Get PDF
    Classical Q-learning algorithm is a reinforcement of learning algorithm that has been applied in path planning of mobile robots. However, classical Q-learning suffers from slow convergence rate and high computational time. This is due to the random decision making for direction during the early stage of path planning. Such weakness curtails the ability of mobile robot to make instantaneous decision in real world application. In this study, the distance aspect and moving target concept were added to Q-learning in order to enhance the direction decision making ability and bypassing dead end. With the addition of these features, Q-learning is able to converge faster and generate shorter path. Consequently, the proposed improved Q-learning is able to achieve average improvement of 29.34-94.85%, 18.29-29.69% and 75.76-99.50% in time used, shortest distance and total distance used, respectively

    Advances in Robotics, Automation and Control

    Get PDF
    The book presents an excellent overview of the recent developments in the different areas of Robotics, Automation and Control. Through its 24 chapters, this book presents topics related to control and robot design; it also introduces new mathematical tools and techniques devoted to improve the system modeling and control. An important point is the use of rational agents and heuristic techniques to cope with the computational complexity required for controlling complex systems. Through this book, we also find navigation and vision algorithms, automatic handwritten comprehension and speech recognition systems that will be included in the next generation of productive systems developed by man

    Recent Advances in Multi Robot Systems

    Get PDF
    To design a team of robots which is able to perform given tasks is a great concern of many members of robotics community. There are many problems left to be solved in order to have the fully functional robot team. Robotics community is trying hard to solve such problems (navigation, task allocation, communication, adaptation, control, ...). This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field. It is focused on the challenging issues of team architectures, vehicle learning and adaptation, heterogeneous group control and cooperation, task selection, dynamic autonomy, mixed initiative, and human and robot team interaction. The book consists of 16 chapters introducing both basic research and advanced developments. Topics covered include kinematics, dynamic analysis, accuracy, optimization design, modelling, simulation and control of multi robot systems

    Dynamic path planning of multiple mobile robots

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Mobile Robots

    Get PDF
    The objective of this book is to cover advances of mobile robotics and related technologies applied for multi robot systems' design and development. Design of control system is a complex issue, requiring the application of information technologies to link the robots into a single network. Human robot interface becomes a demanding task, especially when we try to use sophisticated methods for brain signal processing. Generated electrophysiological signals can be used to command different devices, such as cars, wheelchair or even video games. A number of developments in navigation and path planning, including parallel programming, can be observed. Cooperative path planning, formation control of multi robotic agents, communication and distance measurement between agents are shown. Training of the mobile robot operators is very difficult task also because of several factors related to different task execution. The presented improvement is related to environment model generation based on autonomous mobile robot observations

    Proceedings of The Multi-Agent Logics, Languages, and Organisations Federated Workshops (MALLOW 2010)

    Get PDF
    http://ceur-ws.org/Vol-627/allproceedings.pdfInternational audienceMALLOW-2010 is a third edition of a series initiated in 2007 in Durham, and pursued in 2009 in Turin. The objective, as initially stated, is to "provide a venue where: the cost of participation was minimum; participants were able to attend various workshops, so fostering collaboration and cross-fertilization; there was a friendly atmosphere and plenty of time for networking, by maximizing the time participants spent together"

    Supervisory control of fuzzy discrete event systems with applications to mobile robotics

    Get PDF
    Fuzzy Discrete Event Systems (FDES) were proposed in the literature for modeling and control of a class of event driven and asynchronous dynamical systems that are affected by deterministic uncertainties and vagueness on their representations. In contrast to classical crisp Discrete Event Systems (DES), which have been explored to a sufficient extent in the past, an in-depth study of FDES is yet to be performed, and their feasible real-time application areas need to be further identified. This research work intends to address the supervisory control problem of FDES broadly, while formulating new knowledge in the area. Moreover, it examines the possible applications of these developments in the behavior-based mobile robotics domain. An FDES-based supervisory control framework to facilitate the behavior-based control of a mobile robot is developed at first. The proposed approach is modular in nature and supports behavior integration without making state explosion. Then, this architecture is implemented in simulation as well as in real-time on a mobile robot moving in unstructured environments, and the feasibility of the approach is validated. A general decentralized supervisory control theory of FDES is then established for better information association and ambiguity management in large-scale and distributed systems, while providing less complexity of control computation. Furthermore, using the proposed architecture, simulation and real-time experiments of a tightly-coupled multi-robot object manipulation task are performed. The results are compared with centralized FDES-based and decentralized DES-based approaches. -- A decentralized modular supervisory control theory of FDES is then established for complex systems having a number of modules that are concurrently operating and also containing multiple interactions. -- Finally, a hierarchical supervisory control theory of FDES is established to resolve the control complexity of a large-scale compound system by modularizing the system vertically and assigning multi-level supervisor hierarchies. As a proof-of-concept example to the established theory, a mobile robot navigation problem is discussed. This research work will contribute to the literature by developing novel knowledge and related theories in the areas of decentralized, modular and hierarchical supervisory control of FDES. It also investigates the applicability of these contributions in the mobile robotics arena

    Analysis and Development of Computational Intelligence based Navigational Controllers for Multiple Mobile Robots

    Get PDF
    Navigational path planning problems of the mobile robots have received considerable attention over the past few decades. The navigation problem of mobile robots are consisting of following three aspects i.e. locomotion, path planning and map building. Based on these three aspects path planning algorithm for a mobile robot is formulated, which is capable of finding an optimal collision free path from the start point to the target point in a given environment. The main objective of the dissertation is to investigate the advanced methodologies for both single and multiple mobile robots navigation in highly cluttered environments using computational intelligence approach. Firstly, three different standalone computational intelligence approaches based on the Adaptive Neuro-Fuzzy Inference System (ANFIS), Cuckoo Search (CS) algorithm and Invasive Weed Optimization (IWO) are presented to address the problem of path planning in unknown environments. Next two different hybrid approaches are developed using CS-ANFIS and IWO-ANFIS to solve the mobile robot navigation problems. The performance of each intelligent navigational controller is demonstrated through simulation results using MATLAB. Experimental results are conducted in the laboratory, using real mobile robots to validate the versatility and effectiveness of the proposed navigation techniques. Comparison studies show, that there are good agreement between them. During the analysis of results, it is noticed that CS-ANFIS and IWO-ANFIS hybrid navigational controllers perform better compared to other discussed navigational controllers. The results obtained from the proposed navigation techniques are validated by comparison with the results from other intelligent techniques such as Fuzzy logic, Neural Network, Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO) and other hybrid algorithms. By investigating the results, finally it is concluded that the proposed navigational methodologies are efficient and robust in the sense, that they can be effectively implemented to solve the path optimization problems of mobile robot in any complex environment

    Navigation Techniques for Control of Multiple Mobile Robots

    Get PDF
    The investigation reported in this thesis attempt to develop efficient techniques for the control of multiple mobile robots in an unknown environment. Mobile robots are key components in industrial automation, service provision, and unmanned space exploration. This thesis addresses eight different techniques for the navigation of multiple mobile robots. These are fuzzy logic, neural network, neuro-fuzzy, rule-base, rule-based-neuro-fuzzy, potential field, potential-field-neuro-fuzzy, and simulated-annealing- potential-field- neuro-fuzzy techniques. The main components of this thesis comprises of eight chapters. Following the literature survey in Chapter-2, Chapter-3 describes how to calculate the heading angle for the mobile robots in terms of left wheel velocity and right wheel velocity of the robot. In Chapter-4 a fuzzy logic technique has been analysed. The fuzzy logic technique uses different membership functions for navigation of the multiple mobile robots, which can perform obs..

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion
    corecore