7,508 research outputs found

    Deep generative modeling for single-cell transcriptomics.

    Get PDF
    Single-cell transcriptome measurements can reveal unexplored biological diversity, but they suffer from technical noise and bias that must be modeled to account for the resulting uncertainty in downstream analyses. Here we introduce single-cell variational inference (scVI), a ready-to-use scalable framework for the probabilistic representation and analysis of gene expression in single cells ( https://github.com/YosefLab/scVI ). scVI uses stochastic optimization and deep neural networks to aggregate information across similar cells and genes and to approximate the distributions that underlie observed expression values, while accounting for batch effects and limited sensitivity. We used scVI for a range of fundamental analysis tasks including batch correction, visualization, clustering, and differential expression, and achieved high accuracy for each task

    Simultaneous Coherent Structure Coloring facilitates interpretable clustering of scientific data by amplifying dissimilarity

    Get PDF
    The clustering of data into physically meaningful subsets often requires assumptions regarding the number, size, or shape of the subgroups. Here, we present a new method, simultaneous coherent structure coloring (sCSC), which accomplishes the task of unsupervised clustering without a priori guidance regarding the underlying structure of the data. sCSC performs a sequence of binary splittings on the dataset such that the most dissimilar data points are required to be in separate clusters. To achieve this, we obtain a set of orthogonal coordinates along which dissimilarity in the dataset is maximized from a generalized eigenvalue problem based on the pairwise dissimilarity between the data points to be clustered. This sequence of bifurcations produces a binary tree representation of the system, from which the number of clusters in the data and their interrelationships naturally emerge. To illustrate the effectiveness of the method in the absence of a priori assumptions, we apply it to three exemplary problems in fluid dynamics. Then, we illustrate its capacity for interpretability using a high-dimensional protein folding simulation dataset. While we restrict our examples to dynamical physical systems in this work, we anticipate straightforward translation to other fields where existing analysis tools require ad hoc assumptions on the data structure, lack the interpretability of the present method, or in which the underlying processes are less accessible, such as genomics and neuroscience

    Gravity-Inspired Graph Autoencoders for Directed Link Prediction

    Full text link
    Graph autoencoders (AE) and variational autoencoders (VAE) recently emerged as powerful node embedding methods. In particular, graph AE and VAE were successfully leveraged to tackle the challenging link prediction problem, aiming at figuring out whether some pairs of nodes from a graph are connected by unobserved edges. However, these models focus on undirected graphs and therefore ignore the potential direction of the link, which is limiting for numerous real-life applications. In this paper, we extend the graph AE and VAE frameworks to address link prediction in directed graphs. We present a new gravity-inspired decoder scheme that can effectively reconstruct directed graphs from a node embedding. We empirically evaluate our method on three different directed link prediction tasks, for which standard graph AE and VAE perform poorly. We achieve competitive results on three real-world graphs, outperforming several popular baselines.Comment: ACM International Conference on Information and Knowledge Management (CIKM 2019
    • …
    corecore