2 research outputs found

    VecHGrad for Solving Accurately Complex Tensor Decomposition

    Full text link
    Tensor decomposition, a collection of factorization techniques for multidimensional arrays, are among the most general and powerful tools for scientific analysis. However, because of their increasing size, today's data sets require more complex tensor decomposition involving factorization with multiple matrices and diagonal tensors such as DEDICOM or PARATUCK2. Traditional tensor resolution algorithms such as Stochastic Gradient Descent (SGD), Non-linear Conjugate Gradient descent (NCG) or Alternating Least Square (ALS), cannot be easily applied to complex tensor decomposition or often lead to poor accuracy at convergence. We propose a new resolution algorithm, called VecHGrad, for accurate and efficient stochastic resolution over all existing tensor decomposition, specifically designed for complex decomposition. VecHGrad relies on gradient, Hessian-vector product and adaptive line search to ensure the convergence during optimization. Our experiments on five real-world data sets with the state-of-the-art deep learning gradient optimization models show that VecHGrad is capable of converging considerably faster because of its superior theoretical convergence rate per step. Therefore, VecHGrad targets as well deep learning optimizer algorithms. The experiments are performed for various tensor decomposition including CP, DEDICOM and PARATUCK2. Although it involves a slightly more complex update rule, VecHGrad's runtime is similar in practice to that of gradient methods such as SGD, Adam or RMSProp

    From Persistent Homology to Reinforcement Learning with Applications for Retail Banking

    Full text link
    The retail banking services are one of the pillars of the modern economic growth. However, the evolution of the client's habits in modern societies and the recent European regulations promoting more competition mean the retail banks will encounter serious challenges for the next few years, endangering their activities. They now face an impossible compromise: maximizing the satisfaction of their hyper-connected clients while avoiding any risk of default and being regulatory compliant. Therefore, advanced and novel research concepts are a serious game-changer to gain a competitive advantage. In this context, we investigate in this thesis different concepts bridging the gap between persistent homology, neural networks, recommender engines and reinforcement learning with the aim of improving the quality of the retail banking services. Our contribution is threefold. First, we highlight how to overcome insufficient financial data by generating artificial data using generative models and persistent homology. Then, we present how to perform accurate financial recommendations in multi-dimensions. Finally, we underline a reinforcement learning model-free approach to determine the optimal policy of money management based on the aggregated financial transactions of the clients. Our experimental data sets, extracted from well-known institutions where the privacy and the confidentiality of the clients were not put at risk, support our contributions. In this work, we provide the motivations of our retail banking research project, describe the theory employed to improve the financial services quality and evaluate quantitatively and qualitatively our methodologies for each of the proposed research scenarios.Comment: PhD thesis, Univ Luxembourg (2019
    corecore