232 research outputs found

    PHYSICAL FRAILTY AND WHITE MATTER ABNORMALITIES: THE ARIC STUDY

    Get PDF
    Physical frailty is associated with increased risk for dementia and other neurologic sequelae. However, the neurobiological changes underlying frailty and frailty risk remain unknown. The association of cerebral white matter structure with current and future frailty was examined. Atherosclerosis Risk in Communities Study Neurocognitive Study participants who underwent 3T brain MRI were included. Frailty status was classified according to the Fried criteria. Cerebral white matter integrity was defined using white matter hyperintensity (WMH) volume and microstructure, measured using diffusion tensor imaging fractional anisotropy (FA) and mean diffusivity (MD). Multivariable linear regression was used to relate baseline frailty to white matter structure; multivariable logistic regression was used to relate baseline white matter to frailty risk among participants non-frail at baseline. In the cross-sectional analysis (N=1,754; mean age: 76 years) frailty was associated with greater WMH volume, lower FA, and greater MD. These associations remained consistent after excluding participants with history of stroke or dementia. Among participants non-frail at baseline who completed follow-up frailty assessment (N=1,379; 6.6-year follow-up period), each standard deviation increase in WMH volume was associated with 1.46 higher odds of frailty at follow-up. Composite FA and MD measures were not associated with future frailty; however, secondary analyses found several significant white matter tract-specific associations with frailty risk. The current study demonstrates a robust association of WMH volume with current and future frailty. Although measures of white matter microstructure were altered in frail individuals, these measures were not generally associated with progression from frail to non-frail status

    Neuroimaging, clinical and life course correlates of normal-appearing white matter integrity in 70-year-olds

    Get PDF
    We investigate associations between normal-appearing white matter (NAWM) microstructural integrity in cognitively normal ∼70-year-olds and concurrently measured brain health and cognition, demographics, genetics and life course cardiovascular health. Participants born in the same week in March 1946 (British 1946 Birth cohort) underwent PET-MRI around age 70. Mean standardized NAWM integrity metrics (fractional anisotropy (FA), mean diffusivity (MD), neurite density index (NDI) and orientation dispersion index (ODI)) were derived from diffusion MRI. Linear regression was used to test associations between NAWM metrics and (1) concurrent measures, including whole brain volume, white matter hyperintensity volume (WMHV), PET amyloid and cognition; (2) the influence of demographic and genetic predictors, including sex, childhood cognition, education, socioeconomic position, and genetic risk for Alzheimer’s Disease (APOE-ε4); (3) systolic and diastolic blood pressure and cardiovascular health (FHS-CVS) across adulthood. Sex interactions were tested. Statistical significance included false discovery rate correction (5%). 362 participants met inclusion criteria (mean age 70 years, 49% female). Higher WMHV was associated with lower FA (b=-0.09 [95%CI:-0.11, -0.06] p<0.01), NDI (b=-0.17 [-0.22, -0.12] p<0.01), and higher MD (b=0.14 [-0.10, -0.17] p<0.01); amyloid (in men) was associated with lower FA (b=-0.04 [-0.08, -0.01] p=0.03) and higher MD (b=0.06 [0.01,0.11] p=0.02). FHS-CVS in later-life (age 69) was associated with NAWM [lower FA (b=-0.06 [-0.09, -0.02] p<0.01), NDI (b=-0.10 [-0.17, -0.03] p<0.01), and higher MD (b=0.09 [0.04,0.14] p<0.01). Significant sex interactions (p<0.05) emerged for midlife cardiovascular health (age 53) and NAWM at 70: marginal effect plots demonstrated, in women only, NAWM was associated with higher midlife FHS-CVS (lower FA and NDI), midlife systolic (lower FA, NDI, and higher MD), and diastolic (lower FA and NDI) blood pressure, and greater blood pressure change between 43 and 53 years (lower FA and NDI), independently of WMHV. In summary, poorer NAWM microstructural integrity in ∼70-year-olds was associated with measures of cerebral small vessel disease, amyloid (in males) and later-life cardiovascular health, demonstrating how NAWM can provide additional information to overt white matter disease. Our findings further show that greater midlife cardiovascular risk and higher blood pressure were associated with poorer NAWM microstructural integrity in females only, suggesting that women’s brains may be more susceptible to the effects of midlife blood pressure and cardiovascular health

    Brain white matter structure and amyloid deposition in Black and White older adults: The ARIC-PET study

    Get PDF
    Background White matter abnormalities are a common feature of aging and Alzheimer disease, and tend to be more severe among Black individuals. However, the extent to which white matter abnormalities relate to amyloid deposition, a marker of Alzheimer pathology, remains unclear. This cross-sectional study examined the association of white matter abnormalities with cortical amyloid in a community sample of older adults without dementia and examined the moderating effect of race. Methods and Results Participants from the ARIC-PET (Atherosclerosis Risk in Communities-Positron Emission Tomography) study underwent brain magnetic resonance imaging, which quantified white matter hyperintensity volume and microstructural integrity using diffusion tensor imaging. Participants received florbetapir positron emission tomography imaging to measure brain amyloid. Associations between measures of white matter structure and elevated amyloid status were examined using multivariable logistic regression. Among 322 participants (43% Black), each SD increase in white matter hyperintensity volume was associated with a greater odds of elevated amyloid (odds ratio [OR], 1.37; 95% CI, 1.03-1.83) after adjusting for demographic and cardiovascular risk factors. In race-stratified analyses, a greater white matter hyperintensity volume was more strongly associated with elevated amyloid among Black participants (OR, 2.00; 95% CI, 1.15-3.50), compared with White participants (OR, 1.29; 95% CI, 0.89-1.89). However, the race interaction was not statistically significant

    Understanding preclinical dementia : early detection of dementia through cognitive and biological markers

    Get PDF
    Dementia is becoming a growing healthcare crisis, therefore identifying individuals at risk or in the earliest stages of dementia is essential if prevention or disease modification is to be achieved. The objective of this thesis was to examine cognitive performance and decline during the preclinical phase and explore the ability of cognitive and biological markers to identify those at risk of future dementia. Data from a population-based longitudinal study, SNAC-K, were used to investigate this aim. Study I examined the ability of neuropsychological tests, genetics, and structural MRI volumes to predict dementia six years later. Models were systematically created to identify the best combinations for prediction. A model containing all three modalities: hippocampal volume, a task of category fluency, presence of an APOE ɛ4 allele, white-matter hyperintensities volume, and a task of general knowledge, displayed the most predictive value (AUC=.924; C.I=.883–.965). However, this model did not significantly improve predictive value over one containing only cognitive and genetic markers, suggesting that minor increases in predictivity should be weighed against the costs of additional tests. Study II investigated the benefit of DTI, alongside neuropsychological tests, genetics, and brain volume markers in predicting future dementia. MD values for tracts CHC, CS, FMAJ, and IFOF (AUC=.837– .862) and the FA IFOF latent factor (AUC=.839) were significantly associated with dementia at six years. A final model consisting of a measure of perceptual speed, hippocampal volume, and MD of the FMAJ tract was created with the highest predictive value (AUC=.911). Assessment of microstructural white matter integrity via DTI was associated with future dementia but the additional benefit when combined with other markers was relatively small. Study III narrowed its focus to the ability of cognitive markers alone and the effect of modifying factors (age, sex, education, the presence of an ɛ4 allele, AD–only dementia, and time to diagnosis) on identifying those at risk of dementia. The most predictive model, consisting of category fluency, word recall, and pattern comparison, achieved good prediction values (AUC=.913) for dementia six years later. Tests in the domains of category fluency, episodic memory, and perceptual speed were, in general, good predictors across all subgroups and up to 6 years before a dementia diagnosis. However, cognitive tests became increasingly unreliable at predicting dementia beyond that time. Study IV explored the trajectories of cognitive decline over a 12-year period during the preclinical stage of dementia, before examining the ability of early cognitive decline in identifying those with increased likelihood of future dementia. Persons in the preclinical phase showed increased rate of decline in all cognitive domains compared to those who did not develop dementia (β:-.07 to -.11), this difference was particularly noticeable closer to diagnosis. Those classified as fast decliners for 3 or more cognitive tests demonstrated the highest risk of dementia (HR: 3.38, CI: 1.91-6.01). Although, changes in early rates of decline were small and rates of decline may be more predictive closer to diagnosis. Collectively, these studies confirm a long preclinical period in dementia development, which allows for the use of a wide range of markers (cognitive, genetic, MRI, and DTI) capable of identifying those at high risk of dementia. The ability of these markers to predict future dementia is increased through combining within and between modalities

    Structural and Functional Brain Connectivity in Middle-Aged Carriers of Risk Alleles for Alzheimer\u27s Disease

    Get PDF
    Single nucleotide polymorphisms (SNPs) in APOE, COMT, BDNF, and KIBRA have been associated with age-related memory performance and executive functioning as well as risk for Alzheimer’s disease (AD). The purpose of the present investigation was to characterize differences in brain functional and structural integrity associated with these SNPs as potential endophenotypes of age-related cognitive decline. I focused my investigation on healthy, cognitively normal middle-aged adults, as disentangling the early effects of healthy versus pathological aging in this group may aid early detection and prevention of AD. The aims of the study were 1) to characterize SNP-related differences in functional connectivity within two resting state networks (RSNs; default mode network [DMN] and executive control network [ECN]) associated with memory and executive functioning, respectively; 2) to identify differences in the white matter (WM) microstructural integrity of tracts underlying these RSNs; and 3) to characterize genotype differences in the graph properties of an integrated functional-structural network. Participants (age 40-60, N = 150) underwent resting state functional magnetic resonance imaging (rs-fMRI), diffusion tensor imaging (DTI), and genotyping. Independent components analysis (ICA) was used to derive RSNs, while probabilistic tractography was performed to characterize tracts connecting RSN subregions. A technique known as functional-by-structural hierarchical (FSH) mapping was used to create the integrated, whole brain functional-structural network, or resting state structural connectome (rsSC). I found that BDNF risk allele carriers had lower functional connectivity within the DMN, while KIBRA risk allele carriers had poorer WM microstructural integrity in tracts underlying the DMN and ECN. In addition to these differences in the connectivity of specific RSNs, I found significant impairments in the global and local topology of the rsSC across all evaluated SNPs. Collectively, these findings suggest that integrating multiple neuroimaging modalities and using graph theoretical analysis may reveal network-level vulnerabilities that may serve as biomarkers of age-related cognitive decline in middle age, decades before the onset of overt cognitive impairment

    Emerging determinants of dementia

    Get PDF

    Emerging determinants of dementia

    Get PDF

    APOE-e4-related differences in left thalamic microstructure in cognitively healthy adults

    Get PDF
    APOE-ε4 is a main genetic risk factor for developing late onset Alzheimer’s disease (LOAD) and is thought to interact adversely with other risk factors on the brain. However, evidence regarding the impact of APOE-ε4 on grey matter structure in asymptomatic individuals remains mixed. Much attention has been devoted to characterising APOE-ε4-related changes in the hippocampus, but LOAD pathology is known to spread through the whole of the Papez circuit including the limbic thalamus. Here, we tested the impact of APOE-ε4 and two other risk factors, a family history of dementia and obesity, on grey matter macro- and microstructure across the whole brain in 165 asymptomatic individuals (38–71 years). Microstructural properties of apparent neurite density and dispersion, free water, myelin and cell metabolism were assessed with Neurite Orientation Density and Dispersion (NODDI) and quantitative magnetization transfer (qMT) imaging. APOE-ε4 carriers relative to non-carriers had a lower macromolecular proton fraction (MPF) in the left thalamus. No risk effects were present for cortical thickness, subcortical volume, or NODDI indices. Reduced thalamic MPF may reflect inflammation-related tissue swelling and/or myelin loss in APOE-ε4. Future prospective studies should investigate the sensitivity and specificity of qMT-based MPF as a non-invasive biomarker for LOAD risk

    The effect of physical activity on white matter integrity in aging and prodromal to mild Alzheimer’s disease with vascular comorbidity

    Get PDF
    BackgroundPhysical activity is a modifiable lifestyle factor that has been previously associated with reduced vascular burden and reduced risk of dementia.ObjectivesThis study tested whether physical activity (i.e., being inactive vs. active) contributed to preservation of white matter microstructure in healthy aging controls and patients in prodromal to mild Alzheimer’s disease with low/high vascular burden.MaterialsA total of 213 participants were recruited from memory clinics. They were classified as being either physically active (n = 113) or inactive (n = 100) based on the Cardiovascular Risk Factors, Aging and Dementia (CAIDE) questionnaire. Diffusion-weighted images were acquired for all participants and pre-processed based on a standard protocol.MethodsA factorial design using voxel-wise tract-based spatial statistics (TBSS) was adopted, with 5,000 permutations and threshold-free cluster enhancement (TFCE), to identify significant clusters for fractional anisotropy (FA), axial diffusivity (AxD), mean diffusivity (MD), and radial diffusivity (RD).ResultsClusters of higher FA and lower AxD, MD, and RD values were found for physically active compared with inactive participants that were widespread covering mainly association and projection tracts but also some commissural tracts. A three-way Group × Physical Activity × Vascular Burden interaction effect was found for FA mostly in a variety of projection tracts with a right predominance, and some commissural and association tracts. Post hoc analyses revealed higher FA in patients with high vascular burden who were physically active compared with those patients with high vascular burden who were inactive mainly in projection and association/limbic tracts with a right predominance. Additionally, higher FA was observed in physically active patients with high vascular burden as compared with physically inactive controls with high vascular burden, mainly in bilateral projection fibers and cerebellar regions.ConclusionVoxel-wise TBSS analysis revealed better preservation of white matter microstructure that was prominent in the high-risk group such as the patients with high vascular burden, specifically those who were physically active. The beneficial effects of physical activity on white matter microstructure were not observed in the controls
    • …
    corecore