8,912 research outputs found

    Recent trends, technical concepts and components of computer-assisted orthopedic surgery systems: A comprehensive review

    Get PDF
    Computer-assisted orthopedic surgery (CAOS) systems have become one of the most important and challenging types of system in clinical orthopedics, as they enable precise treatment of musculoskeletal diseases, employing modern clinical navigation systems and surgical tools. This paper brings a comprehensive review of recent trends and possibilities of CAOS systems. There are three types of the surgical planning systems, including: systems based on the volumetric images (computer tomography (CT), magnetic resonance imaging (MRI) or ultrasound images), further systems utilize either 2D or 3D fluoroscopic images, and the last one utilizes the kinetic information about the joints and morphological information about the target bones. This complex review is focused on three fundamental aspects of CAOS systems: their essential components, types of CAOS systems, and mechanical tools used in CAOS systems. In this review, we also outline the possibilities for using ultrasound computer-assisted orthopedic surgery (UCAOS) systems as an alternative to conventionally used CAOS systems.Web of Science1923art. no. 519

    Blood vessel detection in medical procedures using laser Doppler flowmetry

    Get PDF
    The needle procedures such as coronary angioplasty and coronary artery bypass graft installation are the most common surgical interventions performed in medical practice, and the accuracy of the catheter needle placement defines the success of the whole operation. Due to anatomical variations in patients, finding and puncturing the correct blood vessel is a challenging step, and the needle guidance might significantly simplify the process. Therefore, the primary aim of this work was to develop a novel blood vessel detection system based on laser Doppler flowmetry (LDF) technology that will improve the quality of medical needle procedures. In this work, LDF measurement setup was designed, assembled and evaluated. The setup includes custom laser-detector system, two invasive measurements probes, two experimental phantoms and data acquisition software. The optical properties of human tissue and blood were examined in order to define the required laser characteristics and relevant tissue-mimicking materials. The data processing was based on the power spectrum analysis, from which the perfusion parameter was extracted. The measurement range of the system was assessed in respect to the various criteria such as penetration angle, depth and site. The applicability of LDF in the needle procedures was evaluated. The experimental results demonstrated that the blood vessel can be successfully detected in the wide angles range and at different penetration sites. The differentiation between low and high blood flow speeds is also possible. Moreover, the potential of the measurements in tissue was demonstrated. However, certain limitations need to be addressed. It was discovered, that the distinction between the arteria and the vein is challenging, and the penetration depth inside the tissue is restricted. Nevertheless, the proposed technology can be implemented in the needle procedures and a number of other medical applications, such as laparoscopic surgeries and biopsies

    Tactile Sensing System for Lung Tumour Localization during Minimally Invasive Surgery

    Get PDF
    Video-assisted thoracoscopie surgery (VATS) is becoming a prevalent method for lung cancer treatment. However, VATS suffers from the inability to accurately relay haptic information to the surgeon, often making tumour localization difficult. This limitation was addressed by the design of a tactile sensing system (TSS) consisting of a probe with a tactile sensor and interfacing visualization software. In this thesis, TSS performance was tested to determine the feasibility of implementing the system in VATS. This was accomplished through a series of ex vivo experiments in which the tactile sensor was calibrated and the visualization software was modified to provide haptic information visually to the user, and TSS performance was compared using human and robot palpation methods, and conventional VATS instruments. It was concluded that the device offers the possibility of providing to the surgeon the haptic information lost during surgery, thereby mitigating one of the current limitations of VATS

    Navigated Ultrasound in Laparoscopic Surgery

    Get PDF

    Navigation system based in motion tracking sensor for percutaneous renal access

    Get PDF
    Tese de Doutoramento em Engenharia BiomédicaMinimally-invasive kidney interventions are daily performed to diagnose and treat several renal diseases. Percutaneous renal access (PRA) is an essential but challenging stage for most of these procedures, since its outcome is directly linked to the physician’s ability to precisely visualize and reach the anatomical target. Nowadays, PRA is always guided with medical imaging assistance, most frequently using X-ray based imaging (e.g. fluoroscopy). Thus, radiation on the surgical theater represents a major risk to the medical team, where its exclusion from PRA has a direct impact diminishing the dose exposure on both patients and physicians. To solve the referred problems this thesis aims to develop a new hardware/software framework to intuitively and safely guide the surgeon during PRA planning and puncturing. In terms of surgical planning, a set of methodologies were developed to increase the certainty of reaching a specific target inside the kidney. The most relevant abdominal structures for PRA were automatically clustered into different 3D volumes. For that, primitive volumes were merged as a local optimization problem using the minimum description length principle and image statistical properties. A multi-volume Ray Cast method was then used to highlight each segmented volume. Results show that it is possible to detect all abdominal structures surrounding the kidney, with the ability to correctly estimate a virtual trajectory. Concerning the percutaneous puncturing stage, either an electromagnetic or optical solution were developed and tested in multiple in vitro, in vivo and ex vivo trials. The optical tracking solution aids in establishing the desired puncture site and choosing the best virtual puncture trajectory. However, this system required a line of sight to different optical markers placed at the needle base, limiting the accuracy when tracking inside the human body. Results show that the needle tip can deflect from its initial straight line trajectory with an error higher than 3 mm. Moreover, a complex registration procedure and initial setup is needed. On the other hand, a real-time electromagnetic tracking was developed. Hereto, a catheter was inserted trans-urethrally towards the renal target. This catheter has a position and orientation electromagnetic sensor on its tip that function as a real-time target locator. Then, a needle integrating a similar sensor is used. From the data provided by both sensors, one computes a virtual puncture trajectory, which is displayed in a 3D visualization software. In vivo tests showed a median renal and ureteral puncture times of 19 and 51 seconds, respectively (range 14 to 45 and 45 to 67 seconds). Such results represent a puncture time improvement between 75% and 85% when comparing to state of the art methods. 3D sound and vibrotactile feedback were also developed to provide additional information about the needle orientation. By using these kind of feedback, it was verified that the surgeon tends to follow a virtual puncture trajectory with a reduced amount of deviations from the ideal trajectory, being able to anticipate any movement even without looking to a monitor. Best results show that 3D sound sources were correctly identified 79.2 ± 8.1% of times with an average angulation error of 10.4º degrees. Vibration sources were accurately identified 91.1 ± 3.6% of times with an average angulation error of 8.0º degrees. Additionally to the EMT framework, three circular ultrasound transducers were built with a needle working channel. One explored different manufacture fabrication setups in terms of the piezoelectric materials, transducer construction, single vs. multi array configurations, backing and matching material design. The A-scan signals retrieved from each transducer were filtered and processed to automatically detect reflected echoes and to alert the surgeon when undesirable anatomical structures are in between the puncture path. The transducers were mapped in a water tank and tested in a study involving 45 phantoms. Results showed that the beam cross-sectional area oscillates around the ceramics radius and it was possible to automatically detect echo signals in phantoms with length higher than 80 mm. Hereupon, it is expected that the introduction of the proposed system on the PRA procedure, will allow to guide the surgeon through the optimal path towards the precise kidney target, increasing surgeon’s confidence and reducing complications (e.g. organ perforation) during PRA. Moreover, the developed framework has the potential to make the PRA free of radiation for both patient and surgeon and to broad the use of PRA to less specialized surgeons.Intervenções renais minimamente invasivas são realizadas diariamente para o tratamento e diagnóstico de várias doenças renais. O acesso renal percutâneo (ARP) é uma etapa essencial e desafiante na maior parte destes procedimentos. O seu resultado encontra-se diretamente relacionado com a capacidade do cirurgião visualizar e atingir com precisão o alvo anatómico. Hoje em dia, o ARP é sempre guiado com recurso a sistemas imagiológicos, na maior parte das vezes baseados em raios-X (p.e. a fluoroscopia). A radiação destes sistemas nas salas cirúrgicas representa um grande risco para a equipa médica, aonde a sua remoção levará a um impacto direto na diminuição da dose exposta aos pacientes e cirurgiões. De modo a resolver os problemas existentes, esta tese tem como objetivo o desenvolvimento de uma framework de hardware/software que permita, de forma intuitiva e segura, guiar o cirurgião durante o planeamento e punção do ARP. Em termos de planeamento, foi desenvolvido um conjunto de metodologias de modo a aumentar a eficácia com que o alvo anatómico é alcançado. As estruturas abdominais mais relevantes para o procedimento de ARP, foram automaticamente agrupadas em volumes 3D, através de um problema de optimização global com base no princípio de “minimum description length” e propriedades estatísticas da imagem. Por fim, um procedimento de Ray Cast, com múltiplas funções de transferência, foi utilizado para enfatizar as estruturas segmentadas. Os resultados mostram que é possível detetar todas as estruturas abdominais envolventes ao rim, com a capacidade para estimar corretamente uma trajetória virtual. No que diz respeito à fase de punção percutânea, foram testadas duas soluções de deteção de movimento (ótica e eletromagnética) em múltiplos ensaios in vitro, in vivo e ex vivo. A solução baseada em sensores óticos ajudou no cálculo do melhor ponto de punção e na definição da melhor trajetória a seguir. Contudo, este sistema necessita de uma linha de visão com diferentes marcadores óticos acoplados à base da agulha, limitando a precisão com que a agulha é detetada no interior do corpo humano. Os resultados indicam que a agulha pode sofrer deflexões à medida que vai sendo inserida, com erros superiores a 3 mm. Por outro lado, foi desenvolvida e testada uma solução com base em sensores eletromagnéticos. Para tal, um cateter que integra um sensor de posição e orientação na sua ponta, foi colocado por via trans-uretral junto do alvo renal. De seguida, uma agulha, integrando um sensor semelhante, é utilizada para a punção percutânea. A partir da diferença espacial de ambos os sensores, é possível gerar uma trajetória de punção virtual. A mediana do tempo necessário para puncionar o rim e ureter, segundo esta trajetória, foi de 19 e 51 segundos, respetivamente (variações de 14 a 45 e 45 a 67 segundos). Estes resultados representam uma melhoria do tempo de punção entre 75% e 85%, quando comparados com o estado da arte dos métodos atuais. Além do feedback visual, som 3D e feedback vibratório foram explorados de modo a fornecer informações complementares da posição da agulha. Verificou-se que com este tipo de feedback, o cirurgião tende a seguir uma trajetória de punção com desvios mínimos, sendo igualmente capaz de antecipar qualquer movimento, mesmo sem olhar para o monitor. Fontes de som e vibração podem ser corretamente detetadas em 79,2 ± 8,1% e 91,1 ± 3,6%, com erros médios de angulação de 10.4º e 8.0 graus, respetivamente. Adicionalmente ao sistema de navegação, foram também produzidos três transdutores de ultrassom circulares com um canal de trabalho para a agulha. Para tal, foram exploradas diferentes configurações de fabricação em termos de materiais piezoelétricos, transdutores multi-array ou singulares e espessura/material de layers de suporte. Os sinais originados em cada transdutor foram filtrados e processados de modo a detetar de forma automática os ecos refletidos, e assim, alertar o cirurgião quando existem variações anatómicas ao longo do caminho de punção. Os transdutores foram mapeados num tanque de água e testados em 45 phantoms. Os resultados mostraram que o feixe de área em corte transversal oscila em torno do raio de cerâmica, e que os ecos refletidos são detetados em phantoms com comprimentos superiores a 80 mm. Desta forma, é expectável que a introdução deste novo sistema a nível do ARP permitirá conduzir o cirurgião ao longo do caminho de punção ideal, aumentado a confiança do cirurgião e reduzindo possíveis complicações (p.e. a perfuração dos órgãos). Além disso, de realçar que este sistema apresenta o potencial de tornar o ARP livre de radiação e alarga-lo a cirurgiões menos especializados.The present work was only possible thanks to the support by the Portuguese Science and Technology Foundation through the PhD grant with reference SFRH/BD/74276/2010 funded by FCT/MEC (PIDDAC) and by Fundo Europeu de Desenvolvimento Regional (FEDER), Programa COMPETE - Programa Operacional Factores de Competitividade (POFC) do QREN

    Spectrally encoded fiber-based structured lighting probe for intraoperative 3D imaging

    Get PDF
    Three dimensional quantification of organ shape and structure during minimally invasive surgery (MIS) could enhance precision by allowing the registration of multi-modal or pre-operative image data (US/MRI/CT) with the live optical image. Structured illumination is one technique to obtain 3D information through the projection of a known pattern onto the tissue, although currently these systems tend to be used only for macroscopic imaging or open procedures rather than in endoscopy. To account for occlusions, where a projected feature may be hidden from view and/or confused with a neighboring point, a flexible multispectral structured illumination probe has been developed that labels each projected point with a specific wavelength using a supercontinuum laser. When imaged by a standard endoscope camera they can then be segmented using their RGB values, and their 3D coordinates calculated after camera calibration. The probe itself is sufficiently small (1.7 mm diameter) to allow it to be used in the biopsy channel of commonly used medical endoscopes. Surgical robots could therefore also employ this technology to solve navigation and visualization problems in MIS, and help to develop advanced surgical procedures such as natural orifice translumenal endoscopic surgery

    Utilizing Mass Spectrometry Imaging to Correlate N-Glycosylation of Hepatocellular Carcinoma with Tumor Subtypes for Biomarker Discovery

    Get PDF
    Hepatocellular carcinoma (HCC) is a leading cause of cancer deaths globally and is a growing clinical problem with poor survival outcomes beyond early-stage disease. Surveillance for HCC has primarily relied on ultrasound and serum α-fetoprotein (AFP), but combined they only have a sensitivity of 63% for early-stage HCC tumors, suggesting a need for improved diagnostic strategies. Alterations to N-glycan expression are relevant to the progression of cancer, and there a multitude of N-glycan-based cancer biomarkers that have been identified with sensitivity for various cancer types including HCC. Spatial HCC tissue profiling of N-linked glycosylation by matrix-assisted laser desorption ionization imaging mass spectrometry (MALDI-IMS) serves as a new method to evaluate tumor-correlated N-glycosylation and thereby identify potential HCC biomarkers. Previous work has identified significant changes in the N-linked glycosylation of HCC tumors, but has not accounted for the heterogeneous genetic and molecular nature of HCC, which has led to inadequate sensitivity of N-glycan biomarkers. Therefore, we hypothesized that the incorporation of genetic/molecular information into N-glycan-based biomarker development would result in improved sensitivity for HCC. To determine the correlation between HCC-specific N-glycosylation and genetic/molecular tumor features, we profiled HCC tissue samples with MALDI-IMS and correlated the spatial N-glycosylation with a widely used HCC molecular classification that utilizes histological, genetic, and clinical tumor features (Hoshida subtypes). MALDI-IMS data displayed trends that could approximately distinguish between subtypes, with Subtype 1 demonstrating significantly dysregulated N-glycosylation compared to Subtypes 2 and 3, particularly in regard to fucosylation. In order to further the clinical relevance of subtype-dependent N-glycosylation, we analyzed patient-matching HCC tumor tissue, background liver tissue and serum samples through MALDI-IMS. Results showed a N-glycan based model capable of differentiating tumor tissue from background liver tissue with an AUC of 0.9842. When analyzing the associated serum, 24.7% of detected N-glycans were significantly positively correlated between tumor tissue and serum, suggesting that N-glycosylation trends translate from tissue to serum. Additionally, a serum N-glycan-based model was capable of distinguishing Subtype 1/Subtype 2 tumors from Subtype 3 tumors with an AUC of 0.881. Through the utilization of MALDI-IMS, subtype-dependent N-glycosylation trends were identified in both tissue and serum, which can significantly further the development of HCC biomarkers for clinical application

    In vivo and ex vivo techniques using elastic scattering spectroscopy for diagnosis of malignancy in the thyroid gland

    Full text link
    Thesis (M.A.)--Boston University, 2011.OBJECTIVE: Thyroid cancer is the most common endocrine malignancy and patients presenting with thyroid nodules often undergo surgery solely for diagnostic purposes. The goal of our study was to examine the accuracy of Elastic Scattering Spectroscopy (ESS) in distinguishing between benign and malignant thyroid nodules in fresh ex vivo specimens and to design an in vivo ESS probe and device, manufacture it and conduct a clinical trial. METHODS: Patients already undergoing thyroidectomy surgery were consented for the ex vivo study. ESS data was obtained from ex vivo specimens by recording 5 readings per nodule with five repetitive readings per each site. Final pathology reports were used to confirm the diagnosis. The spectra were analyzed using principal component analysis, linear discriminant analysis and leave one out technique. The in vivo ESS study was conceptually designed and IRB approval from Boston Medical Campus was obtained. RESULTS: The ex vivo study showed that ESS could predict the difference between benign and malignant tumors with a sensitivity of 74%, specificity of 90%, positive predictive value of 82% and negative predictive value of 85%. 193 spectra were analyzed from 64 patients, 120 spectra were from benign nodules and 73 from malignant nodules. Subanalysis examined only indeterminate nodules showed sensitivity of 65%, specificity of 79%, PPV 77% and NPV 67%. The in vivo ESS probe was designed and 12 identical instruments were manufactured. Initial experimental readings were taken and parameters were adjusted for the in vivo tissue environment. The clinical trial is underway. CONCLUSIONS: ESS is a practical tool that can accurately identify malignancy in ex vivo thyroid specimens with high specificity and sensitivity. Initial in vivo experimental trials have been conducted and show promise for similar results
    corecore