11 research outputs found

    Finite element analysis of single cell stiffness measurement using PZT-integrated buckling nanoneedle

    Get PDF
    In this project, we propose a new technique for real-time single cell stiffness measurement using PZT-integrated buckling nanoneedle. The PZT and the buckling part of the nanoneedle have been modelled and validated using ABAQUS software. The two parts are integrated together to function as single unit. After calibration, the stiffness, Young’s modulus, Poisson’s ratio and sensitivity of the PZT-integrated buckling nanoneedle have been determined to be 0.8600 Nm-1, 123.4700 GPa, 0.3000 and 0.0693 VmN-1 respectively. Three Saccharomyces cerevisiae yeast cells have been modelled using ABAQUS and validated based on compression test. We determine the average global stiffness and Young’s modulus of the cells to be 10.8867 ± 0.0094 Nm-1 and 110.7033 ± 0.0081 MPa respectively. The nanoneedle and the cell have been assembled to measure the local stiffness of the single Saccharomyces cerevisiae yeast cell. An indentation force of 0.2 ÎŒN equivalent to single mode eigenvalue which causes the nanoneedle to buckle has been applied along y-axis. The local stiffness, Young’s modulus and PZT output voltage of three different sizes Saccharomyces cerevisiae yeast cells have been determined at different environmental conditions. We investigated that, at low temperature the stiffness value is low to adapt to the change in the environmental condition as a result the cell is vulnerable to virus and bacteria attack. In future, the technique will supplement the present-day biochemical technique for diseases diagnosis

    Cutting Edge Nanotechnology

    Get PDF
    The main purpose of this book is to describe important issues in various types of devices ranging from conventional transistors (opening chapters of the book) to molecular electronic devices whose fabrication and operation is discussed in the last few chapters of the book. As such, this book can serve as a guide for identifications of important areas of research in micro, nano and molecular electronics. We deeply acknowledge valuable contributions that each of the authors made in writing these excellent chapters

    Zinc Oxide Nanostructures: Synthesis and Characterization

    Get PDF
    The summary should be ca. 200 words; this text will present the book in all promotional forms (e.g. flyers). Please describe the book in straightforward and consumer-friendly terms. [Zinc oxide (ZnO) is a wide band gap semiconductor with an energy gap of 3.37 eV at room temperature. It has been used considerably for its catalytic, electrical, optoelectronic, and photochemical properties. ZnO nanomaterials, such as quantum dots, nanorods, and nanowires, have been intensively investigated for their important properties. Many methods have been described in the literature for the production of ZnO nanostructures, such as laser ablation, hydrothermal methods, electrochemical deposition, sol-gel methods, chemical vapour deposition, molecular beam epitaxy, the common thermal evaporation method, and the soft chemical solution method. The present Special Issue is devoted to the synthesis and characterization of ZnO nanostructures with novel technological applications.

    Development and characterisation of multifunctional one-dimensional fibres reinforced composite coatings

    Get PDF
    Nanocomposite coatings are attractive due to their unique mechanical, physical and multifunctional properties, which can address the limitations of conventional monolithic structures to achieve an excellent combination of strength, stiffness, toughness, and some other functional properties. In this study, a novel in-situ low temperature (below 500ÂșC) hybrid plasma technology combining active-screen plasma co-sputtering and PECVD has been developed to cost-effectively generate vertically aligned carbon nanotubes (VACNTs) films. A two-step approach has been employed to develop VACNTs reinforced composite coatings. A well-designed CNTs reinforced diamond-like carbon (DLC) composite coating can be formed using the PECVD. Besides, the Ag wires reinforced composite coatings have been deposited through a one-step approach using the advanced hybrid plasma technology combining ASP co-sputtering and plasma carburising in a plasma ambient of CH4 (1.5%) and H2 (98.5%). SEM, TEM, XRD, XPS have been applied to characterise the morphologies and microstructures of these novel composite coatings

    Growth and characterization of ZnO and SiC nanowires

    Get PDF
    The synthesis of semiconductor nanowires has been studied intensively worldwide for a wide spectrum of materials. Such low-dimensional nanostructures are not only interesting for fundamental research due to their unique structural and physical properties relative to their bulk counterparts, but also offer fascinating potential for future technological applications. Deeper understanding and sufficient control of the growth of nanowires are central to the current research interest. The objective of the thesis work is synthesizing semiconductor nanowires using various growth processes, with a focus on the spontaneous growth process, which offers an opportunity for the control of spatial positioning of nanowires. Zinc oxide (ZnO) based and Silicon carbide (SiC) based nanowires have been concentrated to synthesize using vapor-solid (VS) and vapor–liquid–solid (VLS) techniques respectively. ZnO is one of very interesting semiconductor material because of its physical and chemical properties. Also, it is well known that high n-type conductivity can be achieved by alloying zinc oxide with group III elements (such as Al, In or Ga) in ternary or even quaternary oxide compounds, in order to obtain transparent conducting oxides (TCOs). In this part of work, there were two major materials have been synthesized such as vertically aligned ZnO nanorods and ternary Zn(In,Ga,Sn)O nanorods using vapor phase technique. First, solution-free and catalyst-free vertically aligned ZnO nanorods have been synthesized by thermal CVD reactor at relatively low temperature (< 500 °C) to produce high-surface 3D photoanode on glass substrate. Different TCOs films such as Al doped ZnO films deposited by PED, RF-sputtering techniques and ITO were considered for the growth as starting seeding layer for the nanorods. The aim of this work is mainly focused to control the thickness and length of these nanostructures by varying not only the growth parameters, such as amount of Zn evaporation, but also substrate characteristics, such as grain size of Al doped ZnO and ITO seeding films. Second, Indium Zinc oxide nanorods (IZO-NRs) have been obtained at temperatures lower than 500°C using same CVD system, with a resulting indium concentration larger than 1%. The growth of these ternary oxide nanostructures has been obtained at relatively low temperature, starting from the corresponding metals, thanks to the direct deposition on the growth substrate of an In layer, which in its molten state and upon mixture with Zn acts as growth seed. The obtained indium concentration corresponds to the value required to get metallic behavior and make this ternary oxide a TCO (transparent conducting oxide), while the used temperature range makes it compatible also with commercial glass substrates. Same technique have been used to obtain GaZnO and SnZnO nanostructures. Among many kind of semiconductor, SiC is an important wide band gap IV-IV semiconducting material and it exhibit excellent, unique physical and mechanical properties at nano-scale, which lead to their potential applications for being used as the building blocks in nanoelectronics and nanooptoelectronics. Also, it has biocompatibility and inertness can be exploited for biomedical applications. In this part of work, there were two types of SiC nanowires have been synthesized using VLS growth technique. First, Cubic SiC nanowires were successfully grown using home-made induction heated Vapor Phase Epitaxy (VPE) reactor on Si (100) and Si (111) substrate using nickel (Ni) and Iron (Fe) as a catalysts. The main aim of this work is to optimize the condition to grow SiC nanowires with Ni and Fe catalyst. The size and shape of the nanowires has been controlled using temperature and gas flow rate. Second, self-assembled SiC core with SiO2 shell coaxial nanowires using Ni and Fe catalyst have been synthesized by thermal CVD reactor. The growth conditions were optimized for both catalyst using temperature, gas flow rate. This SiC /SiO2 coaxial core/shell nanowires (NWs) are intriguing as novel nanostructured to be functionalized because of the 3C-SiC biocompatibility and of the presence of a SiO2 native shell that favours surface functionalization. Those findings are encouraging in the prospective to employ this functionalized system for different nano-medical applications such as targeted therapy against deep tumor cells

    Carbon Nanotubes

    Get PDF
    Since their discovery in 1991, carbon nanotubes have been considered as one of the most promising materials for a wide range of applications, in virtue of their outstanding properties. During the last two decades, both single-walled and multi-walled CNTs probably represented the hottest research topic concerning materials science, equally from a fundamental and from an applicative point of view. There is a prevailing opinion among the research community that CNTs are now ready for application in everyday world. This book provides an (obviously not exhaustive) overview on some of the amazing possible applications of CNT-based materials in the near future

    Converting Inorganic Rust to Organic Nanostructured Conducting Polymers: Synthesis and Applications

    Get PDF
    Iron rust is a type of corrosion product, coming from the chemical reaction between iron and oxygen in the presence of water that first documented ca. 800 BCE. It is a heterogeneous inorganic solid-state material composed of multiple phases and is ubiquitous throughout the universe. Rust species such as Hematite (α-Fe2O3), Akaganeite (ÎČ-FeOOH), and ferrous hydroxide (Fe(OH)2), make up the solid-state chemical family composed of iron oxides, oxyhydroxides, and hydroxides that are typically recognized as chemical waste. Conducting polymer is a type of organic plastic composed of long chains with repeating subunits that bonding with strong interactions between neighboring molecules. Unlike conventional insulating plastics, conducting polymers possess a unique molecular structure with an electronically conjugated backbone, enabling electron freely to travel interchain and intrachain, and such subject received the Nobel Prize in Chemistry in 2000. This work introduces a unique synthetic strategy that advances the state-of-the-art chemical synthesis of nanostructured conducting polymers by utilizing “waste” material rust, named rust-based vapor-phase polymerization (RVPP). The unique conversion between inorganic rust and organic conducting polymer leads to controlled depositions of poly(3,4-ethylenedioxythiophene) (PEDOT) and polypyrrole (PPy) nanostructures, including fibers, rods, flakes, and thin films. Owing to the high conductivity, large surface area, and tunable band gap, nanostructured conducting polymers provide promising applications in energy storage, photovoltaics, sensing, CO2 photoreduction, and antimicrobial field

    Proceedings ICSBM 2019:2nd international conference of sustainable building materials

    Get PDF
    corecore