2,879 research outputs found

    State morphism MV-algebras

    Get PDF
    We present a complete characterization of subdirectly irreducible MV-algebras with internal states (SMV-algebras). This allows us to classify subdirectly irreducible state morphism MV-algebras (SMMV-algebras) and describe single generators of the variety of SMMV-algebras, and show that we have a continuum of varieties of SMMV-algebras

    MV-algebras freely generated by finite Kleene algebras

    Full text link
    If V and W are varieties of algebras such that any V-algebra A has a reduct U(A) in W, there is a forgetful functor U: V->W that acts by A |-> U(A) on objects, and identically on homomorphisms. This functor U always has a left adjoint F: W->V by general considerations. One calls F(B) the V-algebra freely generated by the W-algebra B. Two problems arise naturally in this broad setting. The description problem is to describe the structure of the V-algebra F(B) as explicitly as possible in terms of the structure of the W-algebra B. The recognition problem is to find conditions on the structure of a given V-algebra A that are necessary and sufficient for the existence of a W-algebra B such that F(B) is isomorphic to A. Building on and extending previous work on MV-algebras freely generated by finite distributive lattices, in this paper we provide solutions to the description and recognition problems in case V is the variety of MV-algebras, W is the variety of Kleene algebras, and B is finitely generated--equivalently, finite. The proofs rely heavily on the Davey-Werner natural duality for Kleene algebras, on the representation of finitely presented MV-algebras by compact rational polyhedra, and on the theory of bases of MV-algebras.Comment: 27 pages, 8 figures. Submitted to Algebra Universali

    Model completions for universal classes of algebras: necessary and sufficient conditions

    Get PDF
    Necessary and sufficient conditions are presented for the (first-order) theory of a universal class of algebraic structures (algebras) to admit a model completion, extending a characterization provided by Wheeler. For varieties of algebras that have equationally definable principal congruences and the compact intersection property, these conditions yield a more elegant characterization obtained (in a slightly more restricted setting) by Ghilardi and Zawadowski. Moreover, it is shown that under certain further assumptions on congruence lattices, the existence of a model completion implies that the variety has equationally definable principal congruences. This result is then used to provide necessary and sufficient conditions for the existence of a model completion for theories of Hamiltonian varieties of pointed residuated lattices, a broad family of varieties that includes lattice-ordered abelian groups and MV-algebras. Notably, if the theory of a Hamiltonian variety of pointed residuated lattices admits a model completion, it must have equationally definable principal congruences. In particular, the theories of lattice-ordered abelian groups and MV-algebras do not have a model completion, as first proved by Glass and Pierce, and Lacava, respectively. Finally, it is shown that certain varieties of pointed residuated lattices generated by their linearly ordered members, including lattice-ordered abelian groups and MV-algebras, can be extended with a binary operation in order to obtain theories that do have a model completion.Comment: 32 page

    On some Properties of Quasi MV Algebras and √quasi-MV Algebras. Part III.

    Get PDF
    In the present paper, which is a sequel to [14] and [3], we investigate further the structure theory of quasi-MV algebras and √′quasi-MV algebras. In particular: we provide an improved version of the subdirect representation theorem for both varieties; we characterise the Ursini ideals of quasi-MV algebras; we establish a restricted version of J´onsson’s lemma, again for both varieties; we simplify the proof of standard completeness for the variety of √′ quasi-MV algebras; we show that this same variety has the finite embeddability property; finally, we investigate the structure of the lattice of subvarieties of √′quasi-MV algebras

    On some properties of quasi-MV algebras and square root quasi-MV algebras, IV

    No full text
    In the present paper, which is a sequel to [20, 4, 12], we investigate further the structure theory of quasiMV algebras and √0quasi-MV algebras. In particular: we provide a new representation of arbitrary √0qMV algebras in terms of √0qMV algebras arising out of their MV* term subreducts of regular elements; we investigate in greater detail the structure of the lattice of √0qMV varieties, proving that it is uncountable, providing equational bases for some of its members, as well as analysing a number of slices of special interest; we show that the variety of √0qMV algebras has the amalgamation property; we provide an axiomatisation of the 1-assertional logic of √0qMV algebras; lastly, we reconsider the correspondence between Cartesian √0qMV algebras and a category of Abelian lattice-ordered groups with operators first addressed in [10]

    A representation theorem for integral rigs and its applications to residuated lattices

    Get PDF
    We prove that every integral rig in Sets is (functorially) the rig of global sections of a sheaf of really local integral rigs. We also show that this representation result may be lifted to residuated integral rigs and then restricted to varieties of these. In particular, as a corollary, we obtain a representation theorem for pre-linear residuated join-semilattices in terms of totally ordered fibers. The restriction of this result to the level of MV-algebras coincides with the Dubuc-Poveda representation theorem.Comment: Manuscript submitted for publicatio
    • …
    corecore