397 research outputs found

    Software Design Change Artifacts Generation through Software Architectural Change Detection and Categorisation

    Get PDF
    Software is solely designed, implemented, tested, and inspected by expert people, unlike other engineering projects where they are mostly implemented by workers (non-experts) after designing by engineers. Researchers and practitioners have linked software bugs, security holes, problematic integration of changes, complex-to-understand codebase, unwarranted mental pressure, and so on in software development and maintenance to inconsistent and complex design and a lack of ways to easily understand what is going on and what to plan in a software system. The unavailability of proper information and insights needed by the development teams to make good decisions makes these challenges worse. Therefore, software design documents and other insightful information extraction are essential to reduce the above mentioned anomalies. Moreover, architectural design artifacts extraction is required to create the developer’s profile to be available to the market for many crucial scenarios. To that end, architectural change detection, categorization, and change description generation are crucial because they are the primary artifacts to trace other software artifacts. However, it is not feasible for humans to analyze all the changes for a single release for detecting change and impact because it is time-consuming, laborious, costly, and inconsistent. In this thesis, we conduct six studies considering the mentioned challenges to automate the architectural change information extraction and document generation that could potentially assist the development and maintenance teams. In particular, (1) we detect architectural changes using lightweight techniques leveraging textual and codebase properties, (2) categorize them considering intelligent perspectives, and (3) generate design change documents by exploiting precise contexts of components’ relations and change purposes which were previously unexplored. Our experiment using 4000+ architectural change samples and 200+ design change documents suggests that our proposed approaches are promising in accuracy and scalability to deploy frequently. Our proposed change detection approach can detect up to 100% of the architectural change instances (and is very scalable). On the other hand, our proposed change classifier’s F1 score is 70%, which is promising given the challenges. Finally, our proposed system can produce descriptive design change artifacts with 75% significance. Since most of our studies are foundational, our approaches and prepared datasets can be used as baselines for advancing research in design change information extraction and documentation

    Contributions of Human Prefrontal Cortex to the Recogitation of Thought

    Get PDF
    Human beings have a unique ability to not only verbally articulate past and present experiences, as well as potential future ones, but also evaluate the mental representations of such things. Some evaluations do little good, in that they poorly reflect facts, create needless emotional distress, and contribute to the obstruction of personal goals, whereas some evaluations are the converse: They are grounded in logic, empiricism, and pragmatism and, therefore, are functional rather than dysfunctional. The aim of non-pharmacological mental health interventions is to revise dysfunctional thoughts into more adaptive, healthier ones; however, the neurocognitive mechanisms driving cognitive change have hitherto remained unclear. Therefore, this thesis examines the role of the prefrontal cortex (PFC) in this aspect of human higher cognition using the relatively new method of functional near-infrared spectroscopy (fNIRS). Chapter 1 advances recogitation as the mental ability on which cognitive restructuring largely depends, concluding that, as a cognitive task, it is a form of open-ended human problem-solving that uses metacognitive and reasoning faculties. Because these faculties share similar executive resources, Chapter 2 discusses the systems in the brain involved in controlled information processing, specifically the nature of executive functions and their neural bases. Chapter 3 builds on these ideas to propose an information-processing model of recogitation, which predicts the roles of different subsystems localized within the PFC and elsewhere in the context of emotion regulation. This chapter also highlights several theoretical and empirical challenges to investigating this neurocognitive theory and proposes some solutions, such as to use experimental designs that are more ecologically valid. Chapter 4 focuses on a neuroimaging method that is best suited to investigating questions of spatial localization in ecological experiments, namely functional near-infrared spectroscopy (fNIRS). Chapter 5 then demonstrates a novel approach to investigating the neural bases of interpersonal interactions in clinical settings using fNIRS. Chapter 6 explores physical activity as a ‘bottom-up’ approach to upregulating the PFC, in that it might help clinical populations with executive deficits to regulate their mental health from the ‘top-down’. Chapter 7 addresses some of the methodological issues of investigating clinical interactions and physical activity in more naturalistic settings by assessing an approach to recovering functional events from observed brain data. Chapter 8 draws several conclusions about the role of the PFC in improving psychological as well as physiological well-being, particularly that rostral PFC is inextricably involved in the cognitive effort to modulate dysfunctional thoughts, and proposes some important future directions for ecological research in cognitive neuroscience; for example, psychotherapy is perhaps too physically stagnant, so integrating exercise into treatment environments might boost the effectiveness of intervention strategies

    Digital Light Processing 3D printing of Thermosets via Reversible Addition-Fragmentation Chain Transfer Polymerization

    Full text link
    Digital light processing (DLP) 3D printing is an efficient additive manufacturing technique for the fabrication of 3D objects with intricate structures. However, current photocurable resins for DLP printing are mainly based on uncontrolled radical polymerizations associated with limited control over formed networks and a high degree of heterogeneity in macromolecular structures. This uncontrolled process could only afford narrow manipulation over bulk material properties, restricting the wide applications of DLP 3D-printed materials. To access versatile control over bulk material properties, reversible-deactivation radical polymerization (RDRP) has been widely applied to tune the macromolecular structures of polymer networks. In particular, photo-mediated reversible addition-fragmentation chain transfer (photoRAFT) polymerization has been employed to design photocurable resins for DLP printing of materials with homogeneous networks and enhanced properties. To deepen the understanding of using photoRAFT polymerization in designing photocurable resins for DLP 3D printing processes, this body of work first investigated the role of RAFT agent architectures (i.e., different number of arms) in a visible-light-mediated photoinduced electron/energy transfer (PET)-RAFT system. The monofunctional RAFT agent resulted in optimal mechanical properties among the studied candidates. Subsequently, the optimized monofunctional RAFT agent was employed in silica nanoparticle-loaded composite photocurable resins based on type I-initiated RAFT polymerization, which produced composite materials with more homogeneous networks and improved tensile properties. As an extension of small molecule RAFT agents, macro-chain transfer agents (macroCTAs) were subsequently utilized to design photocurable resins for printing nanostructured materials via polymerization-induced microphase separation (PIMS). Similarly, macroCTA with 1, 2, and 4-arm were used to study the architecture effect in the PIMS process. The results demonstrated that the nanostructural domain sizes were precisely defined by the arm length of macroCTAs, while the 2 and 4-arm macroCTAs led to phase-inverted morphologies which were not observed in the case of using 1-arm macroCTAs. Afterward, diblock macroCTAs with varied compositions and sequences were employed in the PIMS printing system. Tuning ratio of network-incompatible A and B blocks in macroCTA enables a transition from bicontinuous to less connected morphologies. More importantly, the macroCTA block sequence was also found to significantly affect the PIMS process, nanostructure, and bulk properties of 3D printed materials

    Brain Computations and Connectivity [2nd edition]

    Get PDF
    This is an open access title available under the terms of a CC BY-NC-ND 4.0 International licence. It is free to read on the Oxford Academic platform and offered as a free PDF download from OUP and selected open access locations. Brain Computations and Connectivity is about how the brain works. In order to understand this, it is essential to know what is computed by different brain systems; and how the computations are performed. The aim of this book is to elucidate what is computed in different brain systems; and to describe current biologically plausible computational approaches and models of how each of these brain systems computes. Understanding the brain in this way has enormous potential for understanding ourselves better in health and in disease. Potential applications of this understanding are to the treatment of the brain in disease; and to artificial intelligence which will benefit from knowledge of how the brain performs many of its extraordinarily impressive functions. This book is pioneering in taking this approach to brain function: to consider what is computed by many of our brain systems; and how it is computed, and updates by much new evidence including the connectivity of the human brain the earlier book: Rolls (2021) Brain Computations: What and How, Oxford University Press. Brain Computations and Connectivity will be of interest to all scientists interested in brain function and how the brain works, whether they are from neuroscience, or from medical sciences including neurology and psychiatry, or from the area of computational science including machine learning and artificial intelligence, or from areas such as theoretical physics

    Changing Priorities. 3rd VIBRArch

    Full text link
    In order to warrant a good present and future for people around the planet and to safe the care of the planet itself, research in architecture has to release all its potential. Therefore, the aims of the 3rd Valencia International Biennial of Research in Architecture are: - To focus on the most relevant needs of humanity and the planet and what architectural research can do for solving them. - To assess the evolution of architectural research in traditionally matters of interest and the current state of these popular and widespread topics. - To deepen in the current state and findings of architectural research on subjects akin to post-capitalism and frequently related to equal opportunities and the universal right to personal development and happiness. - To showcase all kinds of research related to the new and holistic concept of sustainability and to climate emergency. - To place in the spotlight those ongoing works or available proposals developed by architectural researchers in order to combat the effects of the COVID-19 pandemic. - To underline the capacity of architectural research to develop resiliency and abilities to adapt itself to changing priorities. - To highlight architecture's multidisciplinarity as a melting pot of multiple approaches, points of view and expertise. - To open new perspectives for architectural research by promoting the development of multidisciplinary and inter-university networks and research groups. For all that, the 3rd Valencia International Biennial of Research in Architecture is open not only to architects, but also for any academic, practitioner, professional or student with a determination to develop research in architecture or neighboring fields.Cabrera Fausto, I. (2023). Changing Priorities. 3rd VIBRArch. Editorial Universitat Politècnica de València. https://doi.org/10.4995/VIBRArch2022.2022.1686

    Facade rehabilitation for the housing in Barcelona Eixample district

    Get PDF

    A Multi-Agent Architecture for An Intelligent Web-Based Educational System

    Get PDF
    An intelligent educational system must constitute an adaptive system built on multi-agent system architecture. The multi-agent architecture component provides self-organization, self-direction, and other control functionalities that are crucially important for an educational system. On the other hand, the adaptiveness of the system is necessary to provide customization, diversification, and interactional functionalities. Therefore, an educational system architecture that integrates multi-agent functionality [50] with adaptiveness can offer the learner the required independent learning experience. An educational system architecture is a complex structure with an intricate hierarchal organization where the functional components of the system undergo sophisticated and unpredictable internal interactions to perform its function. Hence, the system architecture must constitute adaptive and autonomous agents differentiated according to their functions, called multi-agent systems (MASs). The research paper proposes an adaptive hierarchal multi-agent educational system (AHMAES) [51] as an alternative to the traditional education delivery method. The document explains the various architectural characteristics of an adaptive multi-agent educational system and critically analyzes the system’s factors for software quality attributes
    • …
    corecore