2,229 research outputs found

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    Energy Efficiency in Communications and Networks

    Get PDF
    The topic of "Energy Efficiency in Communications and Networks" attracts growing attention due to economical and environmental reasons. The amount of power consumed by information and communication technologies (ICT) is rapidly increasing, as well as the energy bill of service providers. According to a number of studies, ICT alone is responsible for a percentage which varies from 2% to 10% of the world power consumption. Thus, driving rising cost and sustainability concerns about the energy footprint of the IT infrastructure. Energy-efficiency is an aspect that until recently was only considered for battery driven devices. Today we see energy-efficiency becoming a pervasive issue that will need to be considered in all technology areas from device technology to systems management. This book is seeking to provide a compilation of novel research contributions on hardware design, architectures, protocols and algorithms that will improve the energy efficiency of communication devices and networks and lead to a more energy proportional technology infrastructure

    A Fully Implantable Opto-Electro Closed-Loop Neural Interface for Motor Neuron Disease Studies

    Get PDF
    This paper presents a fully implantable closed-loop device for use in freely moving rodents to investigate new treatments for motor neuron disease. The 0.18 µm CMOS integrated circuit comprises 4 stimulators, each featuring 16 channels for optical and electrical stimulation using arbitrary current waveforms at frequencies from 1.5 Hz to 50 kHz, and a bandwidth programmable front-end for neural recording. The implant uses a Qi wireless inductive link which can deliver >100 mW power at a maximum distance of 2 cm for a freely moving rodent. A backup rechargeable battery can support 10 mA continuous stimulation currents for 2.5 hours in the absence of an inductive power link. The implant is controlled by a graphic user interface with broad programmable parameters via a Bluetooth low energy bidirectional data telemetry link. The encapsulated implant is 40 mm × 20 mm × 10 mm. Measured results are presented showing the electrical performance of the electronics and the packaging method

    Wireless Telemetry for Implantable Biomedical Microsystems

    Get PDF

    Study and application of direct RF power injection methodology and mitigation of electromagnetic interference in ADCs

    Get PDF
    There are many publications available in literature regarding the DPI (Direct Power Injection) technique for electronic systems, but few works specifically addressed for mixed-signal converters, which are components existent in almost all electronic devices. IEC 62132-4(International Electrotechnical Commission, 2006) and 62132-1(International Electrotechnical Commission, 2006) standards describe a method for measuring immunity of integrated circuits (IC) in the presence of conducted RF disturbances. This method ensures a high degree of repeatability and correlation of immunity measurements. Knowledge of the electromagnetic immunity of an IC allows the designer to decide if the system will need external protection, and how much effort should be directed to this solution. In this context, the purpose of this work is the study and application of the DPI methodology for injection of EMI in a mixed-signal programmable device, evaluating mitigation possibilities, with special focus on the analog-to-digital converters (ADCs). The main objective is to evaluate the impact of electromagnetic interference (EMI) on different converters (two Successive Approximation Register ADCs, operating with distinct sampling rate and a Sigma-Delta ADC) of the Cypress Semiconductor Programmable SoC (System-on-Chip), PSoC 5LP. Additionally a previously proposed fault tolerance methodology, based on triplication with hardware and time diversity is tested. Results show distinct behaviors of each converter to conducted EMI. Finally, the tested tolerance technique showed to be suitable to reduce error rate of such data acquisition system operating under EMI disturbance.Existem muitas publicações disponíveis na literatura sobre a técnica de DPI (Direct Power Injection ou injeção direta de energia) para sistemas eletrônicos, mas poucos trabalhos direcionados para conversores de sinais mistos, que são componentes existentes em quase todos os dispositivos eletrônicos. As normas IEC 62132-4 (IEC, 2006) e 62132-1 (IEC, 2006) descrevem um método para medir a imunidade de circuitos integrados (CI) na presença de distúrbios de RF conduzidos. Este método garante um alto grau de repetibilidade e correlação das medições da imunidade. O conhecimento da imunidade eletromagnética de um CI permite que o projetista decida se o sistema precisará de proteção externa e quanto esforço deve ser direcionado para esta solução. Nesse contexto, o objetivo deste trabalho é o estudo e aplicação da metodologia DPI para injeção de interferência eletromagnética em um dispositivo programável de sinal misto, avaliando as possibilidades de mitigação, com foco especial em conversores analógico-digitais (ADCs). O principal objetivo é avaliar o impacto da interferência eletromagnética em diferentes conversores (dois ADCs baseados em aproximação sucessiva, operando com taxa de amostragem distintas e um ADC do tipo Sigma-Delta) do SoC(System-on-Chip) programável da Cypress Semiconductor, PSoC 5LP. Além disso, é testada uma metodologia de tolerância a falhas proposta anteriormente, baseada em triplicação com diversidade de hardware e temporal. Os resultados mostram comportamentos distintos de cada conversor para a interferência eletromagnética conduzida. Finalmente, a técnica de tolerância testada mostrou-se adequada para reduzir a taxa de erros desse sistema de aquisição de dados operando sob perturbação eletromagnética

    Survey of Impact of Technology on Effective Implementation of Precision Farming in India

    Get PDF
    The advancements in technology have made its impact on almost every field. India being an agricultural country, proper use of technology can greatly help in improving the standard of living of the farmers. With varying weather conditions, illiteracy of farmers and non-availability of timely assistance, the farmers of this country could not get the best out of their efforts. Precision farming focuses mainly on the aspects that can improve the efficiency based on the data collected from various sources viz. meteorology, sensors, GIS, GPS, etc. The information pertaining to farmland (e.g., soil moisture, soil pH, soil nitrogen) and agro-meteorology (e.g., temperature & humidity, solar radiation, wind speed, atmospheric CO2 concentration, rainfall, climate change and global warming) are used as input parameters to decide the varying requirements of the crop cultivation. Historical farm land data are used as a means to decide on the kind of actions to be taken under a specific scenario. This paper surveys the existing methods of precision farming and highlights the impact of technology in farming. An overview of different technologies used in precision farming around the world and their implications on the yield are discussed. The methods adopted towards managing different types of crops, the varying environmental conditions and the use of realtime data being collected through sensors are also analyzed. Also, the need for dynamic approaches to assist the farmers in taking context specific decisions has been highlighted

    Antennas And Wave Propagation In Wireless Body Area Networks: Design And Evaluation Techniques

    Get PDF
    Recently, fabrication of miniature electronic devices that can be used for wireless connectivity becomes of great interest in many applications. This has resulted in many small and compact wireless devices that are either implantable or wearable. As these devices are small, the space for the antenna is limited. An antenna is the part of the wireless device that receives and transmits a wireless signal. Implantable and wearable antennas are very susceptible to harmful performance degradation caused by the human body and very difficult to integrate, if not designed properly. A designer need to minimize unwanted radiation absorption by the human body to avoid potential health issues. Moreover, a wearable antenna will be inevitably exposed to user movements and has to deal with influences such as crumpling and bending. These deformations can cause degraded performance or a shifted frequency response, which might render the antenna less effective. The existing wearable and implantable antennas’ topologies and designs under discussion still suffer from many challenges such as unstable antenna behavior, low bandwidth, considerable power generation, less biocompatibility, and comparatively bigger size. The work presented in this thesis focused on two main aspects. Part one of the work presents the design, realization, and performance evaluation of two wearable antennas based on flexible and textile materials. In order to achieve high body-antenna isolation, hence, minimal coupling between human body and antenna and to achieve performance enhancement artificial magnetic conductor is integrated with the antenna. The proposed wearable antennas feature a small footprint and low profile characteristics and achieved a wider -10 dB input impedance bandwidth compared to wearable antennas reported in literature. In addition, using new materials in wearable antenna design such as flexible magneto-dielectric and dielectric/magnetic layered substrates is investigated. Effectiveness of using such materials revealed to achieve further improvements in antenna radiation characteristics and bandwidth and to stabilize antenna performance under bending and on body conditions compared to artificial magnetic conductor based antenna. The design of a wideband biocompatible implantable antenna is presented. The antenna features small size (i.e., the antenna size in planar form is 2.52 mm3), wide -10 dB input impedance bandwidth of 7.31 GHz, and low coupling to human tissues. In part two, an overview of investigations done for two wireless body area network applications is presented. The applications are: (a) respiratory rate measurement using ultra-wide band radar system and (b) an accurate phase-based localization method of radio frequency identification tag. The ultimate goal is to study how the antenna design can affect the overall system performance and define its limitations and capabilities. In the first studied application, results indicate that the proposed sensing system is less affected and shows less error when an antenna with directive radiation pattern, low cross-polarization, and stable phase center is used. In the second studied application, results indicate that effects of mutual coupling between the array elements on the phase values are negligible. Thus, the phase of the reflected waves from the tag is mainly determined by the distance between the tag and each antenna element, and is not affected by the induced currents on the other elements

    Development and application of synchronized wide-area power grid measurement

    Get PDF
    Phasor measurement units (PMUs) provide an innovative technology for real-time monitoring of the operational state of entire power systems and significantly improve power grid dynamic observability. This dissertation focuses on development and application of synchronized power grid measurements. The contributions of this dissertation are as followed:First, a novel method for successive approximation register analog to digital converter control in PMUs is developed to compensate for the sampling time error caused by the division remainder between the desirable sampling rate and the oscillator frequency. A variable sampling interval control method is presented by interlacing two integers under a proposed criterion. The frequency of the onboard oscillator is monitored in using the PPS from GPS.Second, the prevalence of GPS signal loss (GSL) on PMUs is first investigated using real PMU data. The correlation between GSL and time, spatial location, solar activity are explored via comprehensive statistical analysis. Furthermore, the impact of GSL on phasor measurement accuracy has been studied via experiments. Several potential solutions to mitigate the impact of GSL on PMUs are discussed and compared.Third, PMU integrated the novel sensors are presented. First, two innovative designs for non-contact PMUs presented. Compared with conventional synchrophasors, non-contact PMUs are more flexible and have lower costs. Moreover, to address nonlinear issues in conventional CT and PT, an optical sensor is used for signal acquisition in PMU. This is the first time the utilization of an optical sensor in PMUs has ever been reported.Fourth, the development of power grid phasor measurement function on an Android based mobile device is developed. The proposed device has the advantages of flexibility, easy installation, lower cost, data visualization and built-in communication channels, compared with conventional PMUs.Fifth, an identification method combining a wavelet-based signature extraction and artificial neural network based machine learning, is presented to identify the location of unsourced measurements. Experiments at multiple geographic scales are performed to validate the effectiveness of the proposed method using ambient frequency measurements. Identification accuracy is presented and the factors that affect identification performance are discussed

    Miniaturized Microwave Devices and Antennas for Wearable, Implantable and Wireless Applications

    Full text link
    This thesis presents a number of microwave devices and antennas that maintain high operational efficiency and are compact in size at the same time. One goal of this thesis is to address several miniaturization challenges of antennas and microwave components by using the theoretical principles of metamaterials, Metasurface coupling resonators and stacked radiators, in combination with the elementary antenna and transmission line theory. While innovating novel solutions, standards and specifications of next generation wireless and bio-medical applications were considered to ensure advancement in the respective scientific fields. Compact reconfigurable phase-shifter and a microwave cross-over based on negative-refractive-index transmission-line (NRI-TL) materialist unit cells is presented. A Metasurface based wearable sensor architecture is proposed, containing an electromagnetic band-gap (EBG) structure backed monopole antenna for off-body communication and a fork shaped antenna for efficient radiation towards the human body. A fully parametrized solution for an implantable antenna is proposed using metallic coated stacked substrate layers. Challenges and possible solutions for off-body, on-body, through-body and across-body communication have been investigated with an aid of computationally extensive simulations and experimental verification. Next, miniaturization and implementation of a UWB antenna along with an analytical model to predict the resonance is presented. Lastly, several miniaturized rectifiers designed specifically for efficient wireless power transfer are proposed, experimentally verified, and discussed. The study answered several research questions of applied electromagnetic in the field of bio-medicine and wireless communication.Comment: A thesis submitted for the degree of Ph

    Integrated Circuits and Systems for Smart Sensory Applications

    Get PDF
    Connected intelligent sensing reshapes our society by empowering people with increasing new ways of mutual interactions. As integration technologies keep their scaling roadmap, the horizon of sensory applications is rapidly widening, thanks to myriad light-weight low-power or, in same cases even self-powered, smart devices with high-connectivity capabilities. CMOS integrated circuits technology is the best candidate to supply the required smartness and to pioneer these emerging sensory systems. As a result, new challenges are arising around the design of these integrated circuits and systems for sensory applications in terms of low-power edge computing, power management strategies, low-range wireless communications, integration with sensing devices. In this Special Issue recent advances in application-specific integrated circuits (ASIC) and systems for smart sensory applications in the following five emerging topics: (I) dedicated short-range communications transceivers; (II) digital smart sensors, (III) implantable neural interfaces, (IV) Power Management Strategies in wireless sensor nodes and (V) neuromorphic hardware
    • …
    corecore