200 research outputs found

    Variational regularisation for inverse problems with imperfect forward operators and general noise models.

    Get PDF
    Funder: Cantab Capital Institute for the Mathematics of InformationFunder: National Physical Laboratory; doi: https://doi.org/10.13039/501100007851Funder: Alan Turing Institute; doi: https://doi.org/10.13039/100012338We study variational regularisation methods for inverse problems with imperfect forward operators whose errors can be modelled by order intervals in a partial order of a Banach lattice. We carry out analysis with respect to existence and convex duality for general data fidelity terms and regularisation functionals. Both for a priori and a posteriori parameter choice rules, we obtain convergence rates of the regularised solutions in terms of Bregman distances. Our results apply to fidelity terms such as Wasserstein distances, φ-divergences, norms, as well as sums and infimal convolutions of those

    Generative Models for Inverse Imaging Problems

    Get PDF

    On Learning the Invisible in Photoacoustic Tomography with Flat Directionally Sensitive Detector

    Get PDF
    In photoacoustic tomography (PAT) with flat sensor, we routinely encounter two types of limited data. The first is due to using a finite sensor and is especially perceptible if the region of interest is large relatively to the sensor or located farther away from the sensor. In this paper, we focus on the second type caused by a varying sensitivity of the sensor to the incoming wavefront direction which can be modelled as binary i.e. by a cone of sensitivity. Such visibility conditions result, in Fourier domain, in a restriction of both the image and the data to a bowtie, akin to the one corresponding to the range of the forward operator. The visible ranges, in image and data domains, are related by the wavefront direction mapping. We adapt the wedge restricted Curvelet decomposition, we previously proposed for the representation of the full PAT data, to separate the visible and invisible wavefronts in the image. We optimally combine fast approximate operators with tailored deep neural network architectures into efficient learned reconstruction methods which perform reconstruction of the visible coefficients and the invisible coefficients are learned from a training set of similar data.Comment: Submitted to SIAM Journal on Imaging Science

    Two-layer neural networks with values in a Banach space

    Get PDF

    CLIP: Cheap Lipschitz Training of Neural Networks

    Full text link
    Despite the large success of deep neural networks (DNN) in recent years, most neural networks still lack mathematical guarantees in terms of stability. For instance, DNNs are vulnerable to small or even imperceptible input perturbations, so called adversarial examples, that can cause false predictions. This instability can have severe consequences in applications which influence the health and safety of humans, e.g., biomedical imaging or autonomous driving. While bounding the Lipschitz constant of a neural network improves stability, most methods rely on restricting the Lipschitz constants of each layer which gives a poor bound for the actual Lipschitz constant. In this paper we investigate a variational regularization method named CLIP for controlling the Lipschitz constant of a neural network, which can easily be integrated into the training procedure. We mathematically analyze the proposed model, in particular discussing the impact of the chosen regularization parameter on the output of the network. Finally, we numerically evaluate our method on both a nonlinear regression problem and the MNIST and Fashion-MNIST classification databases, and compare our results with a weight regularization approach.Comment: 12 pages, 2 figures, accepted at SSVM 202

    Bayesian Variational Regularisation for Dark Matter Reconstruction with Uncertainty Quantification

    Get PDF
    Despite the great wealth of cosmological knowledge accumulated since the early 20th century, the nature of dark-matter, which accounts for ~85% of the matter content of the universe, remains illusive. Unfortunately, though dark-matter is scientifically interesting, with implications for our fundamental understanding of the Universe, it cannot be directly observed. Instead, dark-matter may be inferred from e.g. the optical distortion (lensing) of distant galaxies which, at linear order, manifests as a perturbation to the apparent magnitude (convergence) and ellipticity (shearing). Ensemble observations of the shear are collected and leveraged to construct estimates of the convergence, which can directly be related to the universal dark-matter distribution. Imminent stage IV surveys are forecast to accrue an unprecedented quantity of cosmological information; a discriminative partition of which is accessible through the convergence, and is disproportionately concentrated at high angular resolutions, where the echoes of cosmological evolution under gravity are most apparent. Capitalising on advances in probability concentration theory, this thesis merges the paradigms of Bayesian inference and optimisation to develop hybrid convergence inference techniques which are scalable, statistically principled, and operate over the Euclidean plane, celestial sphere, and 3-dimensional ball. Such techniques can quantify the plausibility of inferences at one-millionth the computational overhead of competing sampling methods. These Bayesian techniques are applied to the hotly debated Abell-520 merging cluster, concluding that observational catalogues contain insufficient information to determine the existence of dark-matter self-interactions. Further, these techniques were applied to all public lensing catalogues, recovering the then largest global dark-matter mass-map. The primary methodological contributions of this thesis depend only on posterior log-concavity, paving the way towards a, potentially revolutionary, complete hybridisation with artificial intelligence techniques. These next-generation techniques are the first to operate over the full 3-dimensional ball, laying the foundations for statistically principled universal dark-matter cartography, and the cosmological insights such advances may provide

    Methods for Photoacoustic Image Reconstruction Exploiting Properties of Curvelet Frame

    Get PDF
    Curvelet frame is of special significance for photoacoustic tomography (PAT) due to its sparsifying and microlocalisation properties. In this PhD project, we explore the methods for image reconstruction in PAT with flat sensor geometry using Curvelet properties. This thesis makes five distinct contributions: (i) We investigate formulation of the forward, adjoint and inverse operators for PAT in Fourier domain. We derive a one-to-one map between wavefront directions in image and data spaces in PAT. Combining the Fourier operators with the wavefront map allows us to create the appropriate PAT operators for solving limited-view problems due to limited angular sensor sensitivity. (ii) We devise a concept of wedge restricted Curvelet transform, a modification of standard Curvelet transform, which allows us to formulate a tight frame of wedge restricted Curvelets on the range of the PAT forward operator for PAT data representation. We consider details specific to PAT data such as symmetries, time oversampling and their consequences. We further adapt the wedge restricted Curvelet to decompose the wavefronts into visible and invisible parts in the data domain as well as in the image domain. (iii) We formulate a two step approach based on the recovery of the complete volume of the photoacoustic data from the sub-sampled data followed by the acoustic inversion, and a one step approach where the photoacoustic image is directly recovered from the subsampled data. The wedge restricted Curvelet is used as the sparse representation of the photoacoustic data in the two step approach. (iv) We discuss a joint variational approach that incorporates Curvelet sparsity in photoacoustic image domain and spatio-temporal regularization via optical flow constraint to achieve improved results for dynamic PAT reconstruction. (v) We consider the limited-view problem due to limited angular sensitivity of the sensor (see (i) for the formulation of the corresponding fast operators in Fourier domain). We propose complementary information learning approach based on splitting the problem into visible and invisible singularities. We perform a sparse reconstruction of the visible Curvelet coefficients using compressed sensing techniques and propose a tailored deep neural network architecture to recover the invisible coefficients
    corecore