7,728 research outputs found

    Modified Sumudu Transform Analytical Approximate Methods For Solving Boundary Value Problems

    Get PDF
    In this study, emphasis is placed on analytical approximate methods. These methods include the combination of the Sumudu transform (ST) with the homotopy perturbation method (HPM), namely the Sumudu transform homotopy perturbation method (STHPM), the combination of the ST with the variational iteration method (VIM), namely the Sumudu transform variational iteration method (STVIM) and finally, the combination of the ST with the homotopy analysis method (HAM), namely the Sumudu transform homotopy analysis method (STHAM). Although these standard methods have been successfully used in solving various types of differential equations, they still suffer from the weakness in choosing the initial guess. In addition, they require an infinite number of iterations which negatively affect the accuracy and convergence of the solutions. The main objective of this thesis is to modify, apply and analyze these methods to handle the difficulties and drawbacks and find the analytical approximate solutions for some cases of linear and nonlinear ordinary differential equations (ODEs). These cases include second-order two-point boundary value problems (BVPs), singular and systems of second-order two-point BVPs. For the proposed methods, the trial function was employed as an initial approximation to provide more accurate approximate solutions for the considered problems. In addition, for the STVIM method, a new algorithm has been proposed to solve various kinds of linear and nonlinear second-order two-point BVPs. In this algorithm, the convolution theorem has been used to find an optimal Lagrange multiplier

    Modified Sumudu Transform Analytical Approximate Methods For Solving Boundary Value Problems

    Get PDF
    In this study, emphasis is placed on analytical approximate methods. These methods include the combination of the Sumudu transform (ST) with the homotopy perturbation method (HPM), namely the Sumudu transform homotopy perturbation method (STHPM), the combination of the ST with the variational iteration method (VIM), namely the Sumudu transform variational iteration method (STVIM) and finally, the combination of the ST with the homotopy analysis method (HAM), namely the Sumudu transform homotopy analysis method (STHAM). Although these standard methods have been successfully used in solving various types of differential equations, they still suffer from the weakness in choosing the initial guess. In addition, they require an infinite number of iterations which negatively affect the accuracy and convergence of the solutions. The main objective of this thesis is to modify, apply and analyze these methods to handle the difficulties and drawbacks and find the analytical approximate solutions for some cases of linear and nonlinear ordinary differential equations (ODEs). These cases include second-order two-point boundary value problems (BVPs), singular and systems of second-order two-point BVPs. For the proposed methods, the trial function was employed as an initial approximation to provide more accurate approximate solutions for the considered problems. In addition, for the STVIM method, a new algorithm has been proposed to solve various kinds of linear and nonlinear second-order two-point BVPs. In this algorithm, the convolution theorem has been used to find an optimal Lagrange multiplier

    An approximation algorithm for the solution of the nonlinear Lane-Emden type equations arising in astrophysics using Hermite functions collocation method

    Full text link
    In this paper we propose a collocation method for solving some well-known classes of Lane-Emden type equations which are nonlinear ordinary differential equations on the semi-infinite domain. They are categorized as singular initial value problems. The proposed approach is based on a Hermite function collocation (HFC) method. To illustrate the reliability of the method, some special cases of the equations are solved as test examples. The new method reduces the solution of a problem to the solution of a system of algebraic equations. Hermite functions have prefect properties that make them useful to achieve this goal. We compare the present work with some well-known results and show that the new method is efficient and applicable.Comment: 34 pages, 13 figures, Published in "Computer Physics Communications

    Differential-Algebraic Equations and Beyond: From Smooth to Nonsmooth Constrained Dynamical Systems

    Get PDF
    The present article presents a summarizing view at differential-algebraic equations (DAEs) and analyzes how new application fields and corresponding mathematical models lead to innovations both in theory and in numerical analysis for this problem class. Recent numerical methods for nonsmooth dynamical systems subject to unilateral contact and friction illustrate the topicality of this development.Comment: Preprint of Book Chapte

    Variational methods for solving nonlinear boundary problems of statics of hyper-elastic membranes

    Full text link
    A number of important results of studying large deformations of hyper-elastic shells are obtained using discrete methods of mathematical physics. In the present paper, using the variational method for solving nonlinear boundary problems of statics of hyper-elastic membranes under the regular hydrostatic load, we investigate peculiarities of deformation of a circular membrane whose mechanical characteristics are described by the Bidermann-type elastic potential. We develop an algorithm for solving a singular perturbation of nonlinear problem for the case of membrane loaded by heavy liquid. This algorithm enables us to obtain approximate solutions both in the presence of boundary layer and without it. The class of admissible functions, on which the variational method is realized, is chosen with account of the structure of formal asymptotic expansion of solutions of the corresponding linearized equations that have singularities in a small parameter at higher derivatives and in the independent variable. We give examples of calculations that illustrate possibilities of the method suggested for solving the problem under consideration
    corecore