13,856 research outputs found

    Variational Bayes for Merging Noisy Databases

    Full text link
    Bayesian entity resolution merges together multiple, noisy databases and returns the minimal collection of unique individuals represented, together with their true, latent record values. Bayesian methods allow flexible generative models that share power across databases as well as principled quantification of uncertainty for queries of the final, resolved database. However, existing Bayesian methods for entity resolution use Markov monte Carlo method (MCMC) approximations and are too slow to run on modern databases containing millions or billions of records. Instead, we propose applying variational approximations to allow scalable Bayesian inference in these models. We derive a coordinate-ascent approximation for mean-field variational Bayes, qualitatively compare our algorithm to existing methods, note unique challenges for inference that arise from the expected distribution of cluster sizes in entity resolution, and discuss directions for future work in this domain.Comment: 12 page

    VerdictDB: Universalizing Approximate Query Processing

    Full text link
    Despite 25 years of research in academia, approximate query processing (AQP) has had little industrial adoption. One of the major causes of this slow adoption is the reluctance of traditional vendors to make radical changes to their legacy codebases, and the preoccupation of newer vendors (e.g., SQL-on-Hadoop products) with implementing standard features. Additionally, the few AQP engines that are available are each tied to a specific platform and require users to completely abandon their existing databases---an unrealistic expectation given the infancy of the AQP technology. Therefore, we argue that a universal solution is needed: a database-agnostic approximation engine that will widen the reach of this emerging technology across various platforms. Our proposal, called VerdictDB, uses a middleware architecture that requires no changes to the backend database, and thus, can work with all off-the-shelf engines. Operating at the driver-level, VerdictDB intercepts analytical queries issued to the database and rewrites them into another query that, if executed by any standard relational engine, will yield sufficient information for computing an approximate answer. VerdictDB uses the returned result set to compute an approximate answer and error estimates, which are then passed on to the user or application. However, lack of access to the query execution layer introduces significant challenges in terms of generality, correctness, and efficiency. This paper shows how VerdictDB overcomes these challenges and delivers up to 171×\times speedup (18.45×\times on average) for a variety of existing engines, such as Impala, Spark SQL, and Amazon Redshift, while incurring less than 2.6% relative error. VerdictDB is open-sourced under Apache License.Comment: Extended technical report of the paper that appeared in Proceedings of the 2018 International Conference on Management of Data, pp. 1461-1476. ACM, 201

    Mixture of Bilateral-Projection Two-dimensional Probabilistic Principal Component Analysis

    Full text link
    The probabilistic principal component analysis (PPCA) is built upon a global linear mapping, with which it is insufficient to model complex data variation. This paper proposes a mixture of bilateral-projection probabilistic principal component analysis model (mixB2DPPCA) on 2D data. With multi-components in the mixture, this model can be seen as a soft cluster algorithm and has capability of modeling data with complex structures. A Bayesian inference scheme has been proposed based on the variational EM (Expectation-Maximization) approach for learning model parameters. Experiments on some publicly available databases show that the performance of mixB2DPPCA has been largely improved, resulting in more accurate reconstruction errors and recognition rates than the existing PCA-based algorithms

    Monte Carlo Co-Ordinate Ascent Variational Inference

    Get PDF
    In Variational Inference (VI), coordinate-ascent and gradient-based approaches are two major types of algorithms for approximating difficult-to-compute probability densities. In real-world implementations of complex models, Monte Carlo methods are widely used to estimate expectations in coordinate-ascent approaches and gradients in derivative-driven ones. We discuss a Monte Carlo Co-ordinate Ascent VI (MC-CAVI) algorithm that makes use of Markov chain Monte Carlo (MCMC) methods in the calculation of expectations required within Co-ordinate Ascent VI (CAVI). We show that, under regularity conditions, an MC-CAVI recursion will get arbitrarily close to a maximiser of the evidence lower bound (ELBO) with any given high probability. In numerical examples, the performance of MC-CAVI algorithm is compared with that of MCMC and -- as a representative of derivative-based VI methods -- of Black Box VI (BBVI). We discuss and demonstrate MC-CAVI's suitability for models with hard constraints in simulated and real examples. We compare MC-CAVI's performance with that of MCMC in an important complex model used in Nuclear Magnetic Resonance (NMR) spectroscopy data analysis -- BBVI is nearly impossible to be employed in this setting due to the hard constraints involved in the model
    • …
    corecore