152 research outputs found

    Variational Wasserstein Barycenters for Geometric Clustering

    Full text link
    We propose to compute Wasserstein barycenters (WBs) by solving for Monge maps with variational principle. We discuss the metric properties of WBs and explore their connections, especially the connections of Monge WBs, to K-means clustering and co-clustering. We also discuss the feasibility of Monge WBs on unbalanced measures and spherical domains. We propose two new problems -- regularized K-means and Wasserstein barycenter compression. We demonstrate the use of VWBs in solving these clustering-related problems

    A Smoothed Dual Approach for Variational Wasserstein Problems

    Full text link
    Variational problems that involve Wasserstein distances have been recently proposed to summarize and learn from probability measures. Despite being conceptually simple, such problems are computationally challenging because they involve minimizing over quantities (Wasserstein distances) that are themselves hard to compute. We show that the dual formulation of Wasserstein variational problems introduced recently by Carlier et al. (2014) can be regularized using an entropic smoothing, which leads to smooth, differentiable, convex optimization problems that are simpler to implement and numerically more stable. We illustrate the versatility of this approach by applying it to the computation of Wasserstein barycenters and gradient flows of spacial regularization functionals

    Regularized Wasserstein Means for Aligning Distributional Data

    Full text link
    We propose to align distributional data from the perspective of Wasserstein means. We raise the problem of regularizing Wasserstein means and propose several terms tailored to tackle different problems. Our formulation is based on the variational transportation to distribute a sparse discrete measure into the target domain. The resulting sparse representation well captures the desired property of the domain while reducing the mapping cost. We demonstrate the scalability and robustness of our method with examples in domain adaptation, point set registration, and skeleton layout

    Sliced Wasserstein Distance for Learning Gaussian Mixture Models

    Full text link
    Gaussian mixture models (GMM) are powerful parametric tools with many applications in machine learning and computer vision. Expectation maximization (EM) is the most popular algorithm for estimating the GMM parameters. However, EM guarantees only convergence to a stationary point of the log-likelihood function, which could be arbitrarily worse than the optimal solution. Inspired by the relationship between the negative log-likelihood function and the Kullback-Leibler (KL) divergence, we propose an alternative formulation for estimating the GMM parameters using the sliced Wasserstein distance, which gives rise to a new algorithm. Specifically, we propose minimizing the sliced-Wasserstein distance between the mixture model and the data distribution with respect to the GMM parameters. In contrast to the KL-divergence, the energy landscape for the sliced-Wasserstein distance is more well-behaved and therefore more suitable for a stochastic gradient descent scheme to obtain the optimal GMM parameters. We show that our formulation results in parameter estimates that are more robust to random initializations and demonstrate that it can estimate high-dimensional data distributions more faithfully than the EM algorithm

    On the computation of Wasserstein barycenters

    Get PDF
    The Wasserstein barycenter is an important notion in the analysis of high dimensional data with a broad range of applications in applied probability, economics, statistics, and in particular to clustering and image processing. In this paper, we state a general version of the equivalence of the Wasserstein barycenter problem to the n-coupling problem. As a consequence, the coupling to the sum principle (characterizing solutions to the n-coupling problem) provides a novel criterion for the explicit characterization of barycenters. Based on this criterion, we provide as a main contribution the simple to implement iterative swapping algorithm (ISA) for computing barycenters. The ISA is a completely non-parametric algorithm which provides a sharp image of the support of the barycenter and has a quadratic time complexity which is comparable to other well established algorithms designed to compute barycenters. The algorithm can also be applied to more complex optimization problems like the k-barycenter problem
    • …
    corecore