9,968 research outputs found

    Variational Sparse Coding

    Get PDF
    Unsupervised discovery of interpretable features and controllable generation with highdimensional data are currently major challenges in machine learning, with applications in data visualisation, clustering and artificial data synthesis. We propose a model based on variational auto-encoders (VAEs) in which interpretation is induced through latent space sparsity with a mixture of Spike and Slab distributions as prior. We derive an evidence lower bound for this model and propose a specific training method for recovering disentangled features as sparse elements in latent vectors. In our experiments, we demonstrate superior disentanglement performance to standard VAE approaches when an estimate of the number of true sources of variation is not available and objects display different combinations of attributes. Furthermore, the new model provides unique capabilities, such as recovering feature exploitation, synthesising samples that share attributes with a given input object and controlling both discrete and continuous features upon generation

    Variational Sparse Coding

    Get PDF
    Unsupervised discovery of interpretable features and controllable generation with highdimensional data are currently major challenges in machine learning, with applications in data visualisation, clustering and artificial data synthesis. We propose a model based on variational auto-encoders (VAEs) in which interpretation is induced through latent space sparsity with a mixture of Spike and Slab distributions as prior. We derive an evidence lower bound for this model and propose a specific training method for recovering disentangled features as sparse elements in latent vectors. In our experiments, we demonstrate superior disentanglement performance to standard VAE approaches when an estimate of the number of true sources of variation is not available and objects display different combinations of attributes. Furthermore, the new model provides unique capabilities, such as recovering feature exploitation, synthesising samples that share attributes with a given input object and controlling both discrete and continuous features upon generation

    Truncated Variational Sampling for "Black Box" Optimization of Generative Models

    Get PDF
    We investigate the optimization of two probabilistic generative models with binary latent variables using a novel variational EM approach. The approach distinguishes itself from previous variational approaches by using latent states as variational parameters. Here we use efficient and general purpose sampling procedures to vary the latent states, and investigate the "black box" applicability of the resulting optimization procedure. For general purpose applicability, samples are drawn from approximate marginal distributions of the considered generative model as well as from the model's prior distribution. As such, variational sampling is defined in a generic form, and is directly executable for a given model. As a proof of concept, we then apply the novel procedure (A) to Binary Sparse Coding (a model with continuous observables), and (B) to basic Sigmoid Belief Networks (which are models with binary observables). Numerical experiments verify that the investigated approach efficiently as well as effectively increases a variational free energy objective without requiring any additional analytical steps

    Towards Disentangled Representations via Variational Sparse Coding

    Get PDF
    International audienceWe present a framework for learning disentangled representations with variational autoencoders in an unsupervised manner, which explicitly imposes sparsity and interpretability of the latent encodings. Leveraging ideas from Sparse Coding models, we consider the Spike and Slab prior distribution for the latent variables, and a modification of the ELBO, inspired by β-VAE model to enforce decomposability over the latent representation. We run our proposed model in a variety of quantitative and qualitative experiments for MNIST, Fashion-MNIST, CelebA and dSprites datasets, showing that the framework disentangles the latent space in continuous sparse interpretable factors and is competitive with current disentangling models

    SC-VAE: Sparse Coding-based Variational Autoencoder

    Full text link
    Learning rich data representations from unlabeled data is a key challenge towards applying deep learning algorithms in downstream supervised tasks. Several variants of variational autoencoders have been proposed to learn compact data representaitons by encoding high-dimensional data in a lower dimensional space. Two main classes of VAEs methods may be distinguished depending on the characteristics of the meta-priors that are enforced in the representation learning step. The first class of methods derives a continuous encoding by assuming a static prior distribution in the latent space. The second class of methods learns instead a discrete latent representation using vector quantization (VQ) along with a codebook. However, both classes of methods suffer from certain challenges, which may lead to suboptimal image reconstruction results. The first class of methods suffers from posterior collapse, whereas the second class of methods suffers from codebook collapse. To address these challenges, we introduce a new VAE variant, termed SC-VAE (sparse coding-based VAE), which integrates sparse coding within variational autoencoder framework. Instead of learning a continuous or discrete latent representation, the proposed method learns a sparse data representation that consists of a linear combination of a small number of learned atoms. The sparse coding problem is solved using a learnable version of the iterative shrinkage thresholding algorithm (ISTA). Experiments on two image datasets demonstrate that our model can achieve improved image reconstruction results compared to state-of-the-art methods. Moreover, the use of learned sparse code vectors allows us to perform downstream task like coarse image segmentation through clustering image patches.Comment: 15 pages, 11 figures, and 3 table
    • …
    corecore