6,714 research outputs found

    Reparameterized Variational Rejection Sampling

    Full text link
    Traditional approaches to variational inference rely on parametric families of variational distributions, with the choice of family playing a critical role in determining the accuracy of the resulting posterior approximation. Simple mean-field families often lead to poor approximations, while rich families of distributions like normalizing flows can be difficult to optimize and usually do not incorporate the known structure of the target distribution due to their black-box nature. To expand the space of flexible variational families, we revisit Variational Rejection Sampling (VRS) [Grover et al., 2018], which combines a parametric proposal distribution with rejection sampling to define a rich non-parametric family of distributions that explicitly utilizes the known target distribution. By introducing a low-variance reparameterized gradient estimator for the parameters of the proposal distribution, we make VRS an attractive inference strategy for models with continuous latent variables. We argue theoretically and demonstrate empirically that the resulting method--Reparameterized Variational Rejection Sampling (RVRS)--offers an attractive trade-off between computational cost and inference fidelity. In experiments we show that our method performs well in practice and that it is well-suited for black-box inference, especially for models with local latent variables.Comment: 26 pages & 10 figure

    An efficient sampling algorithm for Variational Monte Carlo

    Get PDF
    We propose a new algorithm for sampling the NN-body density ∣Ψ(R)∣2/∫R3N∣Ψ∣2|\Psi({\bf R})|^2/\int_{\mathbb{R}^{3N}} |\Psi|^2 in the Variational Monte Carlo (VMC) framework. This algorithm is based upon a modified Ricci-Ciccotti discretization of the Langevin dynamics in the phase space (R,P)({\bf R},{\bf P}) improved by a Metropolis acceptation/rejection step. We show through some representative numerical examples (Lithium, Fluorine and Copper atoms, and phenol molecule), that this algorithm is superior to the standard sampling algorithm based on the biased random walk (importance sampling).Comment: 23 page

    Metropolis Methods for Quantum Monte Carlo Simulations

    Full text link
    Since its first description fifty years ago, the Metropolis Monte Carlo method has been used in a variety of different ways for the simulation of continuum quantum many-body systems. This paper will consider some of the generalizations of the Metropolis algorithm employed in quantum Monte Carlo: Variational Monte Carlo, dynamical methods for projector monte carlo ({\it i.e.} diffusion Monte Carlo with rejection), multilevel sampling in path integral Monte Carlo, the sampling of permutations, cluster methods for lattice models, the penalty method for coupled electron-ionic systems and the Bayesian analysis of imaginary time correlation functions.Comment: Proceedings of "Monte Carlo Methods in the Physical Sciences" Celebrating the 50th Anniversary of the Metropolis Algorith

    Resampled Priors for Variational Autoencoders

    Full text link
    We propose Learned Accept/Reject Sampling (LARS), a method for constructing richer priors using rejection sampling with a learned acceptance function. This work is motivated by recent analyses of the VAE objective, which pointed out that commonly used simple priors can lead to underfitting. As the distribution induced by LARS involves an intractable normalizing constant, we show how to estimate it and its gradients efficiently. We demonstrate that LARS priors improve VAE performance on several standard datasets both when they are learned jointly with the rest of the model and when they are fitted to a pretrained model. Finally, we show that LARS can be combined with existing methods for defining flexible priors for an additional boost in performance
    • …
    corecore