157 research outputs found

    Recursive Parameter Estimation of Non-Gaussian Hidden Markov Models for Occupancy Estimation in Smart Buildings

    Get PDF
    A significant volume of data has been produced in this era. Therefore, accurately modeling these data for further analysis and extraction of meaningful patterns is becoming a major concern in a wide variety of real-life applications. Smart buildings are one of these areas urgently demanding analysis of data. Managing the intelligent systems in smart homes, will reduce energy consumption as well as enhance users’ comfort. In this context, Hidden Markov Model (HMM) as a learnable finite stochastic model has consistently been a powerful tool for data modeling. Thus, we have been motivated to propose occupancy estimation frameworks for smart buildings through HMM due to the importance of indoor occupancy estimations in automating environmental settings. One of the key factors in modeling data with HMM is the choice of the emission probability. In this thesis, we have proposed novel HMMs extensions through Generalized Dirichlet (GD), Beta-Liouville (BL), Inverted Dirichlet (ID), Generalized Inverted Dirichlet (GID), and Inverted Beta-Liouville (IBL) distributions as emission probability distributions. These distributions have been investigated due to their capabilities in modeling a variety of non-Gaussian data, overcoming the limited covariance structures of other distributions such as the Dirichlet distribution. The next step after determining the emission probability is estimating an optimized parameter of the distribution. Therefore, we have developed a recursive parameter estimation based on maximum likelihood estimation approach (MLE). Due to the linear complexity of the proposed recursive algorithm, the developed models can successfully model real-time data, this allowed the models to be used in an extensive range of practical applications

    Modeling Semi-Bounded Support Data using Non-Gaussian Hidden Markov Models with Applications

    Get PDF
    With the exponential growth of data in all formats, and data categorization rapidly becoming one of the most essential components of data analysis, it is crucial to research and identify hidden patterns in order to extract valuable information that promotes accurate and solid decision making. Because data modeling is the first stage in accomplishing any of these tasks, its accuracy and consistency are critical for later development of a complete data processing framework. Furthermore, an appropriate distribution selection that corresponds to the nature of the data is a particularly interesting subject of research. Hidden Markov Models (HMMs) are some of the most impressively powerful probabilistic models, which have recently made a big resurgence in the machine learning industry, despite having been recognized for decades. Their ever-increasing application in a variety of critical practical settings to model varied and heterogeneous data (image, video, audio, time series, etc.) is the subject of countless extensions. Equally prevalent, finite mixture models are a potent tool for modeling heterogeneous data of various natures. The over-use of Gaussian mixture models for data modeling in the literature is one of the main driving forces for this thesis. This work focuses on modeling positive vectors, which naturally occur in a variety of real-life applications, by proposing novel HMMs extensions using the Inverted Dirichlet, the Generalized Inverted Dirichlet and the BetaLiouville mixture models as emission probabilities. These extensions are motivated by the proven capacity of these mixtures to deal with positive vectors and overcome mixture models’ impotence to account for any ordering or temporal limitations relative to the information. We utilize the aforementioned distributions to derive several theoretical approaches for learning and deploying Hidden Markov Modelsinreal-world settings. Further, we study online learning of parameters and explore the integration of a feature selection methodology. Extensive experimentation on highly challenging applications ranging from image categorization, video categorization, indoor occupancy estimation and Natural Language Processing, reveals scenarios in which such models are appropriate to apply, and proves their effectiveness compared to the extensively used Gaussian-based models

    Non-Gaussian data modeling with hidden Markov models

    Get PDF
    In 2015, 2.5 quintillion bytes of data were daily generated worldwide of which 90% were unstructured data that do not follow any pre-defined model. These data can be found in a great variety of formats among them are texts, images, audio tracks, or videos. With appropriate techniques, this massive amount of data is a goldmine from which one can extract a variety of meaningful embedded information. Among those techniques, machine learning algorithms allow multiple processing possibilities from compact data representation, to data clustering, classification, analysis, and synthesis, to the detection of outliers. Data modeling is the first step for performing any of these tasks and the accuracy and reliability of this initial step is thus crucial for subsequently building up a complete data processing framework. The principal motivation behind my work is the over-use of the Gaussian assumption for data modeling in the literature. Though this assumption is probably the best to make when no information about the data to be modeled is available, in most cases studying a few data properties would make other distributions a better assumption. In this thesis, I focus on proportional data that are most commonly known in the form of histograms and that naturally arise in a number of situations such as in bag-of-words methods. These data are non-Gaussian and their modeling with distributions belonging the Dirichlet family, that have common properties, is expected to be more accurate. The models I focus on are the hidden Markov models, well-known for their capabilities to easily handle dynamic ordered multivariate data. They have been shown to be very effective in numerous fields for various applications for the last 30 years and especially became a corner stone in speech processing. Despite their extensive use in almost all computer vision areas, they are still mainly suited for Gaussian data modeling. I propose here to theoretically derive different approaches for learning and applying to real-world situations hidden Markov models based on mixtures of Dirichlet, generalized Dirichlet, Beta-Liouville distributions, and mixed data. Expectation-Maximization and variational learning approaches are studied and compared over several data sets, specifically for the task of detecting and localizing unusual events. Hybrid HMMs are proposed to model mixed data with the goal of detecting changes in satellite images corrupted by different noises. Finally, several parametric distances for comparing Dirichlet and generalized Dirichlet-based HMMs are proposed and extensively tested for assessing their robustness. My experimental results show situations in which such models are worthy to be used, but also unravel their strength and limitations

    Mixture-Based Clustering and Hidden Markov Models for Energy Management and Human Activity Recognition: Novel Approaches and Explainable Applications

    Get PDF
    In recent times, the rapid growth of data in various fields of life has created an immense need for powerful tools to extract useful information from data. This has motivated researchers to explore and devise new ideas and methods in the field of machine learning. Mixture models have gained substantial attention due to their ability to handle high-dimensional data efficiently and effectively. However, when adopting mixture models in such spaces, four crucial issues must be addressed, including the selection of probability density functions, estimation of mixture parameters, automatic determination of the number of components, identification of features that best discriminate the different components, and taking into account the temporal information. The primary objective of this thesis is to propose a unified model that addresses these interrelated problems. Moreover, this thesis proposes a novel approach that incorporates explainability. This thesis presents innovative mixture-based modelling approaches tailored for diverse applications, such as household energy consumption characterization, energy demand management, fault detection and diagnosis and human activity recognition. The primary contributions of this thesis encompass the following aspects: Initially, we propose an unsupervised feature selection approach embedded within a finite bounded asymmetric generalized Gaussian mixture model. This model is adept at handling synthetic and real-life smart meter data, utilizing three distinct feature extraction methods. By employing the expectation-maximization algorithm in conjunction with the minimum message length criterion, we are able to concurrently estimate the model parameters, perform model selection, and execute feature selection. This unified optimization process facilitates the identification of household electricity consumption profiles along with the optimal subset of attributes defining each profile. Furthermore, we investigate the impact of household characteristics on electricity usage patterns to pinpoint households that are ideal candidates for demand reduction initiatives. Subsequently, we introduce a semi-supervised learning approach for the mixture of mixtures of bounded asymmetric generalized Gaussian and uniform distributions. The integration of the uniform distribution within the inner mixture bolsters the model's resilience to outliers. In the unsupervised learning approach, the minimum message length criterion is utilized to ascertain the optimal number of mixture components. The proposed models are validated through a range of applications, including chiller fault detection and diagnosis, occupancy estimation, and energy consumption characterization. Additionally, we incorporate explainability into our models and establish a moderate trade-off between prediction accuracy and interpretability. Finally, we devise four novel models for human activity recognition (HAR): bounded asymmetric generalized Gaussian mixture-based hidden Markov model with feature selection~(BAGGM-FSHMM), bounded asymmetric generalized Gaussian mixture-based hidden Markov model~(BAGGM-HMM), asymmetric generalized Gaussian mixture-based hidden Markov model with feature selection~(AGGM-FSHMM), and asymmetric generalized Gaussian mixture-based hidden Markov model~(AGGM-HMM). We develop an innovative method for simultaneous estimation of feature saliencies and model parameters in BAGGM-FSHMM and AGGM-FSHMM while integrating the bounded support asymmetric generalized Gaussian distribution~(BAGGD), the asymmetric generalized Gaussian distribution~(AGGD) in the BAGGM-HMM and AGGM-HMM respectively. The aforementioned proposed models are validated using video-based and sensor-based HAR applications, showcasing their superiority over several mixture-based hidden Markov models~(HMMs) across various performance metrics. We demonstrate that the independent incorporation of feature selection and bounded support distribution in a HAR system yields benefits; Simultaneously, combining both concepts results in the most effective model among the proposed models

    High-dimensional Sparse Count Data Clustering Using Finite Mixture Models

    Get PDF
    Due to the massive amount of available digital data, automating its analysis and modeling for different purposes and applications has become an urgent need. One of the most challenging tasks in machine learning is clustering, which is defined as the process of assigning observations sharing similar characteristics to subgroups. Such a task is significant, especially in implementing complex algorithms to deal with high-dimensional data. Thus, the advancement of computational power in statistical-based approaches is increasingly becoming an interesting and attractive research domain. Among the successful methods, mixture models have been widely acknowledged and successfully applied in numerous fields as they have been providing a convenient yet flexible formal setting for unsupervised and semi-supervised learning. An essential problem with these approaches is to develop a probabilistic model that represents the data well by taking into account its nature. Count data are widely used in machine learning and computer vision applications where an object, e.g., a text document or an image, can be represented by a vector corresponding to the appearance frequencies of words or visual words, respectively. Thus, they usually suffer from the well-known curse of dimensionality as objects are represented with high-dimensional and sparse vectors, i.e., a few thousand dimensions with a sparsity of 95 to 99%, which decline the performance of clustering algorithms dramatically. Moreover, count data systematically exhibit the burstiness and overdispersion phenomena, which both cannot be handled with a generic multinomial distribution, typically used to model count data, due to its dependency assumption. This thesis is constructed around six related manuscripts, in which we propose several approaches for high-dimensional sparse count data clustering via various mixture models based on hierarchical Bayesian modeling frameworks that have the ability to model the dependency of repetitive word occurrences. In such frameworks, a suitable distribution is used to introduce the prior information into the construction of the statistical model, based on a conjugate distribution to the multinomial, e.g. the Dirichlet, generalized Dirichlet, and the Beta-Liouville, which has numerous computational advantages. Thus, we proposed a novel model that we call the Multinomial Scaled Dirichlet (MSD) based on using the scaled Dirichlet as a prior to the multinomial to allow more modeling flexibility. Although these frameworks can model burstiness and overdispersion well, they share similar disadvantages making their estimation procedure is very inefficient when the collection size is large. To handle high-dimensionality, we considered two approaches. First, we derived close approximations to the distributions in a hierarchical structure to bring them to the exponential-family form aiming to combine the flexibility and efficiency of these models with the desirable statistical and computational properties of the exponential family of distributions, including sufficiency, which reduce the complexity and computational efforts especially for sparse and high-dimensional data. Second, we proposed a model-based unsupervised feature selection approach for count data to overcome several issues that may be caused by the high dimensionality of the feature space, such as over-fitting, low efficiency, and poor performance. Furthermore, we handled two significant aspects of mixture based clustering methods, namely, parameters estimation and performing model selection. We considered the Expectation-Maximization (EM) algorithm, which is a broadly applicable iterative algorithm for estimating the mixture model parameters, with incorporating several techniques to avoid its initialization dependency and poor local maxima. For model selection, we investigated different approaches to find the optimal number of components based on the Minimum Message Length (MML) philosophy. The effectiveness of our approaches is evaluated using challenging real-life applications, such as sentiment analysis, hate speech detection on Twitter, topic novelty detection, human interaction recognition in films and TV shows, facial expression recognition, face identification, and age estimation

    Generative Models Based on the Bounded Asymmetric Student’s t-Distribution

    Get PDF
    Gaussian mixture models (GMMs) are a very useful and widely popular approach for clustering, but they have several limitations, such as low outliers tolerance and assumption of data normality. Another problem in relation to finite mixture models in general is the inference of an optimal number of mixture components. An excellent approach to solve this problem is model selection, which is the process of choosing the optimal number of mixture components that ensures the best clustering performance. In this thesis, we attempt to tackle both aforementioned issues: we propose using minimum message length (MML) as a model selection criterion for multivariate bounded asymmetric Student’s t-mixture model (BASMM). In fact, BASMM is chosen as an alternative to improve the GMM’s limitations, as it provides a better fit for the real-world data irregularities. We formulate the definition of MML and the BASMM, and we test their performance through multiple experiments with different problem settings. Hidden Markov models (HMMs) are popular methods for continuous sequential data modeling and classification tasks. In such applications, the observation emission densities of the HMM hidden states are typically modeled by elliptically contoured distributions, namely Gaussians or Student’s t-distributions. In this context, this thesis proposes BAMMHMM: a novel HMM with Bounded Asymmetric Student’s t-Mixture Model (BASMM) emissions. This HMM is destined to sufficiently fit skewed and outlier-heavy observations, which are typical in many fields, such as financial or signal processing-related datasets. We demonstrate the improved robustness of our model by presenting the results of different real-world applications

    Human Action Recognition from Various Data Modalities:A Review

    Get PDF
    Human Action Recognition (HAR), aiming to understand human behaviors and then assign category labels, has a wide range of applications, and thus has been attracting increasing attention in the field of computer vision. Generally, human actions can be represented using various data modalities, such as RGB, skeleton, depth, infrared sequence, point cloud, event stream, audio, acceleration, radar, and WiFi, etc., which encode different sources of useful yet distinct information and have various advantages and application scenarios. Consequently, lots of existing works have attempted to investigate different types of approaches for HAR using various modalities. In this paper, we give a comprehensive survey for HAR from the perspective of the input data modalities. Specifically, we review both the hand-crafted feature-based and deep learning-based methods for single data modalities, and also review the methods based on multiple modalities, including the fusion-based frameworks and the co-learning-based approaches. The current benchmark datasets for HAR are also introduced. Finally, we discuss some potentially important research directions in this area

    International Conference on Mathematical Analysis and Applications in Science and Engineering – Book of Extended Abstracts

    Get PDF
    The present volume on Mathematical Analysis and Applications in Science and Engineering - Book of Extended Abstracts of the ICMASC’2022 collects the extended abstracts of the talks presented at the International Conference on Mathematical Analysis and Applications in Science and Engineering – ICMA2SC'22 that took place at the beautiful city of Porto, Portugal, in June 27th-June 29th 2022 (3 days). Its aim was to bring together researchers in every discipline of applied mathematics, science, engineering, industry, and technology, to discuss the development of new mathematical models, theories, and applications that contribute to the advancement of scientific knowledge and practice. Authors proposed research in topics including partial and ordinary differential equations, integer and fractional order equations, linear algebra, numerical analysis, operations research, discrete mathematics, optimization, control, probability, computational mathematics, amongst others. The conference was designed to maximize the involvement of all participants and will present the state-of- the-art research and the latest achievements.info:eu-repo/semantics/publishedVersio

    Molecular Dynamics Simulation

    Get PDF
    Condensed matter systems, ranging from simple fluids and solids to complex multicomponent materials and even biological matter, are governed by well understood laws of physics, within the formal theoretical framework of quantum theory and statistical mechanics. On the relevant scales of length and time, the appropriate ‘first-principles’ description needs only the Schroedinger equation together with Gibbs averaging over the relevant statistical ensemble. However, this program cannot be carried out straightforwardly—dealing with electron correlations is still a challenge for the methods of quantum chemistry. Similarly, standard statistical mechanics makes precise explicit statements only on the properties of systems for which the many-body problem can be effectively reduced to one of independent particles or quasi-particles. [...

    Graduate School of Engineering and Management Catalog 2018-2019

    Get PDF
    The Graduate Catalog represents the offerings, programs, and requirements in effect at the time of publication
    • …
    corecore