13,346 research outputs found

    Automatic Differentiation Variational Inference

    Full text link
    Probabilistic modeling is iterative. A scientist posits a simple model, fits it to her data, refines it according to her analysis, and repeats. However, fitting complex models to large data is a bottleneck in this process. Deriving algorithms for new models can be both mathematically and computationally challenging, which makes it difficult to efficiently cycle through the steps. To this end, we develop automatic differentiation variational inference (ADVI). Using our method, the scientist only provides a probabilistic model and a dataset, nothing else. ADVI automatically derives an efficient variational inference algorithm, freeing the scientist to refine and explore many models. ADVI supports a broad class of models-no conjugacy assumptions are required. We study ADVI across ten different models and apply it to a dataset with millions of observations. ADVI is integrated into Stan, a probabilistic programming system; it is available for immediate use

    Moment-Based Variational Inference for Markov Jump Processes

    Full text link
    We propose moment-based variational inference as a flexible framework for approximate smoothing of latent Markov jump processes. The main ingredient of our approach is to partition the set of all transitions of the latent process into classes. This allows to express the Kullback-Leibler divergence between the approximate and the exact posterior process in terms of a set of moment functions that arise naturally from the chosen partition. To illustrate possible choices of the partition, we consider special classes of jump processes that frequently occur in applications. We then extend the results to parameter inference and demonstrate the method on several examples.Comment: Accepted by the 36th International Conference on Machine Learning (ICML 2019

    A Disentangled Recognition and Nonlinear Dynamics Model for Unsupervised Learning

    Full text link
    This paper takes a step towards temporal reasoning in a dynamically changing video, not in the pixel space that constitutes its frames, but in a latent space that describes the non-linear dynamics of the objects in its world. We introduce the Kalman variational auto-encoder, a framework for unsupervised learning of sequential data that disentangles two latent representations: an object's representation, coming from a recognition model, and a latent state describing its dynamics. As a result, the evolution of the world can be imagined and missing data imputed, both without the need to generate high dimensional frames at each time step. The model is trained end-to-end on videos of a variety of simulated physical systems, and outperforms competing methods in generative and missing data imputation tasks.Comment: NIPS 201
    • …
    corecore