6 research outputs found

    Robust variational Bayesian clustering for underdetermined speech separation

    Get PDF
    The main focus of this thesis is the enhancement of the statistical framework employed for underdetermined T-F masking blind separation of speech. While humans are capable of extracting a speech signal of interest in the presence of other interference and noise; actual speech recognition systems and hearing aids cannot match this psychoacoustic ability. They perform well in noise and reverberant free environments but suffer in realistic environments. Time-frequency masking algorithms based on computational auditory scene analysis attempt to separate multiple sound sources from only two reverberant stereo mixtures. They essentially rely on the sparsity that binaural cues exhibit in the time-frequency domain to generate masks which extract individual sources from their corresponding spectrogram points to solve the problem of underdetermined convolutive speech separation. Statistically, this can be interpreted as a classical clustering problem. Due to analytical simplicity, a finite mixture of Gaussian distributions is commonly used in T-F masking algorithms for modelling interaural cues. Such a model is however sensitive to outliers, therefore, a robust probabilistic model based on the Student's t-distribution is first proposed to improve the robustness of the statistical framework. This heavy tailed distribution, as compared to the Gaussian distribution, can potentially better capture outlier values and thereby lead to more accurate probabilistic masks for source separation. This non-Gaussian approach is applied to the state-of the-art MESSL algorithm and comparative studies are undertaken to confirm the improved separation quality. A Bayesian clustering framework that can better model uncertainties in reverberant environments is then exploited to replace the conventional expectation-maximization (EM) algorithm within a maximum likelihood estimation (MLE) framework. A variational Bayesian (VB) approach is then applied to the MESSL algorithm to cluster interaural phase differences thereby avoiding the drawbacks of MLE; specifically the probable presence of singularities and experimental results confirm an improvement in the separation performance. Finally, the joint modelling of the interaural phase and level differences and the integration of their non-Gaussian modelling within a variational Bayesian framework, is proposed. This approach combines the advantages of the robust estimation provided by the Student's t-distribution and the robust clustering inherent in the Bayesian approach. In other words, this general framework avoids the difficulties associated with MLE and makes use of the heavy tailed Student's t-distribution to improve the estimation of the soft probabilistic masks at various reverberation times particularly for sources in close proximity. Through an extensive set of simulation studies which compares the proposed approach with other T-F masking algorithms under different scenarios, a significant improvement in terms of objective and subjective performance measures is achieved

    On enhancing model-based expectation maximization source separation in dynamic reverberant conditions using automatic Clifton effect

    Full text link
    [EN] Source separation algorithms based on spatial cues generally face two major problems. The first one is their general performance degradation in reverberant environments and the second is their inability to differentiate closely located sources due to similarity of their spatial cues. The latter problem gets amplified in highly reverberant environments as reverberations have a distorting effect on spatial cues. In this paper, we have proposed a separation algorithm, in which inside an enclosure, the distortions due to reverberations in a spatial cue based source separation algorithm namely model-based expectation-maximization source separation and localization (MESSL) are minimized by using the Precedence effect. The Precedence effect acts as a gatekeeper which restricts the reverberations entering the separation system resulting in its improved separation performance. And this effect is automatically transformed into the Clifton effect to deal with the dynamic acoustic conditions. Our proposed algorithm has shown improved performance over MESSL in all kinds of reverberant conditions including closely located sources. On average, 22.55% improvement in SDR (signal to distortion ratio) and 15% in PESQ (perceptual evaluation of speech quality) is observed by using the Clifton effect to tackle dynamic reverberant conditions.This project is funded by Higher Education Commission (HEC), Pakistan, under project no. 6330/KPK/NRPU/R&D/HEC/2016.Gul, S.; Khan, MS.; Shah, SW.; Lloret, J. (2020). On enhancing model-based expectation maximization source separation in dynamic reverberant conditions using automatic Clifton effect. International Journal of Communication Systems. 33(3):1-18. https://doi.org/10.1002/dac.421011833

    Deep neural networks for monaural source separation

    Get PDF
    PhD ThesisIn monaural source separation (MSS) only one recording is available and the spatial information, generally, cannot be extracted. It is also an undetermined inverse problem. Rcently, the development of the deep neural network (DNN) provides the framework to address this problem. How to select the types of neural network models and training targets is the research question. Moreover, in real room environments, the reverberations from floor, walls, ceiling and furnitures in a room are challenging, which distort the received mixture and degrade the separation performance. In many real-world applications, due to the size of hardware, the number of microphones cannot always be multiple. Hence, deep learning based MSS is the focus of this thesis. The first contribution is on improving the separation performance by enhancing the generalization ability of the deep learning-base MSS methods. According to no free lunch (NFL) theorem, it is impossible to find the neural network model which can estimate the training target perfectly in all cases. From the acquired speech mixture, the information of clean speech signal could be over- or underestimated. Besides, the discriminative criterion objective function can be used to address ambiguous information problem in the training stage of deep learning. Based on this, the adaptive discriminative criterion is proposed and better separation performance is obtained. In addition to this, another alternative method is using the sequentially trained neural network models within different training targets to further estimate iv Abstract v the clean speech signal. By using different training targets, the generalization ability of the neural network models is improved, and thereby better separation performance. The second contribution is addressing MSS problem in reverberant room environments. To achieve this goal, a novel time-frequency (T-F) mask, e.g. dereverberation mask (DM) is proposed to estimate the relationship between the reverberant noisy speech mixture and the dereverberated mixture. Then, a separation mask is exploited to extract the desired clean speech signal from the noisy speech mixture. The DM can be integrated with ideal ratio mask (IRM) to generate ideal enhanced mask (IEM) to address both dereverberation and separation problems. Based on the DM and the IEM, a two-stage approach is proposed with different system structures. In the final contribution, both phase information of clean speech signal and long short-term memory (LSTM) recurrent neural network (RNN) are introduced. A novel complex signal approximation (SA)-based method is proposed with the complex domain of signals. By utilizing the LSTM RNN as the neural network model, the temporal information is better used, and the desired speech signal can be estimated more accurately. Besides, the phase information of clean speech signal is applied to mitigate the negative influence from noisy phase information. The proposed MSS algorithms are evaluated with various challenging datasets such as the TIMIT, IEEE corpora and NOISEX database. The algorithms are assessed with state-of-the-art techniques and performance measures to confirm that the proposed MSS algorithms provide novel solution

    Sound Source Localization and Modeling: Spherical Harmonics Domain Approaches

    Get PDF
    Sound source localization has been an important research topic in the acoustic signal processing community because of its wide use in many acoustic applications, including speech separation, speech enhancement, sound event detection, automatic speech recognition, automated camera steering, and virtual reality. In the recent decade, there is a growing interest in the research of sound source localization using higher-order microphone arrays, which are capable of recording and analyzing the soundfield over a target spatial area. This thesis studies a novel source feature called the relative harmonic coefficient, that easily estimated from the higher-order microphone measurements. This source feature has direct applications for sound source localization due to its sole dependence on the source position. This thesis proposes two novel sound source localization algorithms using the relative harmonic coefficients: (i) a low-complexity single source localization approach that localizes the source' elevation and azimuth separately. This approach is also appliable to acoustic enhancement for the higher-order microphone array recordings; (ii) a semi-supervised multi-source localization algorithm in a noisy and reverberant environment. Although this approach uses a learning schema, it still has a strong potential to be implemented in practice because only a limited number of labeled measurements are required. However, this algorithm has an inherent limitation as it requires the availability of single-source components. Thus, it is unusable in scenarios where the original recordings have limited single-source components (e.g., multiple sources simultaneously active). To address this issue, we develop a novel MUSIC framework based approach that directly uses simultaneous multi-source recordings. This developed MUSIC approach uses robust measurements of relative sound pressure from the higher-order microphone and is shown to be more suitable in noisy environments than the traditional MUSIC method. While the proposed approaches address the source localization problems, in practice, the broader problem of source localization has some more common challenges, which have received less attention. One such challenge is the common assumption of the sound sources being omnidirectional, which is hardly the case with a typical commercial loudspeaker. Therefore, in this thesis, we analyze the broader problem of analyzing directional characteristics of the commercial loudspeakers by deriving equivalent theoretical acoustic models. Several acoustic models are investigated, including plane waves decomposition, point source decomposition, and mixed source decomposition. We finally conduct extensive experimental examinations to see which acoustic model has more similar characteristics with commercial loudspeakers

    Variational EM for clustering interaural phase cues in MESSL for blind source separation of speech

    No full text
    corecore