1,203 research outputs found

    Grammar induction for mildly context sensitive languages using variational Bayesian inference

    Full text link
    The following technical report presents a formal approach to probabilistic minimalist grammar induction. We describe a formalization of a minimalist grammar. Based on this grammar, we define a generative model for minimalist derivations. We then present a generalized algorithm for the application of variational Bayesian inference to lexicalized mildly context sensitive language grammars which in this paper is applied to the previously defined minimalist grammar

    Viterbi Training for PCFGs: Hardness Results and Competitiveness of Uniform Initialization

    Get PDF
    We consider the search for a maximum likelihood assignment of hidden derivations and grammar weights for a probabilistic context-free grammar, the problem approximately solved by “Viterbi training.” We show that solving and even approximating Viterbi training for PCFGs is NP-hard. We motivate the use of uniformat-random initialization for Viterbi EM as an optimal initializer in absence of further information about the correct model parameters, providing an approximate bound on the log-likelihood.

    Logistic Normal Priors for Unsupervised Probabilistic Grammar Induction

    Get PDF
    We explore a new Bayesian model for probabilistic grammars, a family of distributions over discrete structures that includes hidden Markov models and probabilistic context-free grammars. Our model extends the correlated topic model framework to probabilistic grammars, exploiting the logistic normal distribution as a prior over the grammar parameters. We derive a variational EM algorithm for that model, and then experiment with the task of unsupervised grammar induction for natural language dependency parsing. We show that our model achieves superior results over previous models that use different priors.

    Syntactic Topic Models

    Full text link
    The syntactic topic model (STM) is a Bayesian nonparametric model of language that discovers latent distributions of words (topics) that are both semantically and syntactically coherent. The STM models dependency parsed corpora where sentences are grouped into documents. It assumes that each word is drawn from a latent topic chosen by combining document-level features and the local syntactic context. Each document has a distribution over latent topics, as in topic models, which provides the semantic consistency. Each element in the dependency parse tree also has a distribution over the topics of its children, as in latent-state syntax models, which provides the syntactic consistency. These distributions are convolved so that the topic of each word is likely under both its document and syntactic context. We derive a fast posterior inference algorithm based on variational methods. We report qualitative and quantitative studies on both synthetic data and hand-parsed documents. We show that the STM is a more predictive model of language than current models based only on syntax or only on topics

    Unsupervised Neural Hidden Markov Models

    Get PDF
    In this work, we present the first results for neuralizing an Unsupervised Hidden Markov Model. We evaluate our approach on tag in- duction. Our approach outperforms existing generative models and is competitive with the state-of-the-art though with a simpler model easily extended to include additional context.Comment: accepted at EMNLP 2016, Workshop on Structured Prediction for NLP. Oral presentatio

    Grammar Variational Autoencoder

    Get PDF
    Deep generative models have been wildly successful at learning coherent latent representations for continuous data such as video and audio. However, generative modeling of discrete data such as arithmetic expressions and molecular structures still poses significant challenges. Crucially, state-of-the-art methods often produce outputs that are not valid. We make the key observation that frequently, discrete data can be represented as a parse tree from a context-free grammar. We propose a variational autoencoder which encodes and decodes directly to and from these parse trees, ensuring the generated outputs are always valid. Surprisingly, we show that not only does our model more often generate valid outputs, it also learns a more coherent latent space in which nearby points decode to similar discrete outputs. We demonstrate the effectiveness of our learned models by showing their improved performance in Bayesian optimization for symbolic regression and molecular synthesis

    The Effect of Non-tightness on Bayesian Estimation of PCFGs

    Get PDF
    Probabilistic context-free grammars have the unusual property of not always defining tight distributions (i.e., the sum of the “probabilities” of the trees the grammar generates can be less than one). This paper reviews how this non-tightness can arise and discusses its impact on Bayesian estimation of PCFGs. We begin by presenting the notion of “almost everywhere tight grammars ” and show that linear CFGs follow it. We then propose three different ways of reinterpreting non-tight PCFGs to make them tight, show that the Bayesian estimators in Johnson et al. (2007) are correct under one of them, and provide MCMC samplers for the other two. We conclude with a discussion of the impact of tightness empirically.
    • 

    corecore