662 research outputs found

    Emergence of associative learning in a neuromorphic inference network

    Get PDF
    OBJECTIVE: In the theoretical framework of predictive coding and active inference, the brain can be viewed as instantiating a rich generative model of the world that predicts incoming sensory data while continuously updating its parameters via minimization of prediction errors. While this theory has been successfully applied to cognitive processes - by modelling the activity of functional neural networks at a mesoscopic scale - the validity of the approach when modelling neurons as an ensemble of inferring agents, in a biologically plausible architecture, remained to be explored. APPROACH: We modelled a simplified cerebellar circuit with individual neurons acting as Bayesian agents to simulate the classical delayed eyeblink conditioning protocol. Neurons and synapses adjusted their activity to minimize their prediction error, which was used as the network cost function. This cerebellar network was then implemented in hardware by replicating digital neuronal elements via a low-power microcontroller. MAIN RESULTS: Persistent changes of synaptic strength - that mirrored neurophysiological observations - emerged via local (neurocentric) prediction error minimization, leading to the expression of associative learning. The same paradigm was effectively emulated in low-power hardware showing remarkably efficient performance compared to conventional neuromorphic architectures. SIGNIFICANCE: These findings show that: i) an ensemble of free energy minimizing neurons - organized in a biological plausible architecture - can recapitulate functional self-organization observed in nature, such as associative plasticity, and ii) a neuromorphic network of inference units can learn unsupervised tasks without embedding predefined learning rules in the circuit, thus providing a potential avenue to a novel form of brain-inspired artificial intelligence

    Emergence of associative learning in a neuromorphic inference network

    Get PDF
    Objective. In the theoretical framework of predictive coding and active inference, the brain can be viewed as instantiating a rich generative model of the world that predicts incoming sensory data while continuously updating its parameters via minimization of prediction errors. While this theory has been successfully applied to cognitive processes-by modelling the activity of functional neural networks at a mesoscopic scale-the validity of the approach when modelling neurons as an ensemble of inferring agents, in a biologically plausible architecture, remained to be explored.Approach.We modelled a simplified cerebellar circuit with individual neurons acting as Bayesian agents to simulate the classical delayed eyeblink conditioning protocol. Neurons and synapses adjusted their activity to minimize their prediction error, which was used as the network cost function. This cerebellar network was then implemented in hardware by replicating digital neuronal elements via a low-power microcontroller.Main results. Persistent changes of synaptic strength-that mirrored neurophysiological observations-emerged via local (neurocentric) prediction error minimization, leading to the expression of associative learning. The same paradigm was effectively emulated in low-power hardware showing remarkably efficient performance compared to conventional neuromorphic architectures.Significance. These findings show that: (a) an ensemble of free energy minimizing neurons-organized in a biological plausible architecture-can recapitulate functional self-organization observed in nature, such as associative plasticity, and (b) a neuromorphic network of inference units can learn unsupervised tasks without embedding predefined learning rules in the circuit, thus providing a potential avenue to a novel form of brain-inspired artificial intelligence

    Deterministic Bayesian Information Fusion and the Analysis of its Performance

    Full text link
    This paper develops a mathematical and computational framework for analyzing the expected performance of Bayesian data fusion, or joint statistical inference, within a sensor network. We use variational techniques to obtain the posterior expectation as the optimal fusion rule under a deterministic constraint and a quadratic cost, and study the smoothness and other properties of its classification performance. For a certain class of fusion problems, we prove that this fusion rule is also optimal in a much wider sense and satisfies strong asymptotic convergence results. We show how these results apply to a variety of examples with Gaussian, exponential and other statistics, and discuss computational methods for determining the fusion system's performance in more general, large-scale problems. These results are motivated by studying the performance of fusing multi-modal radar and acoustic sensors for detecting explosive substances, but have broad applicability to other Bayesian decision problems

    Probabilistic analysis of the human transcriptome with side information

    Get PDF
    Understanding functional organization of genetic information is a major challenge in modern biology. Following the initial publication of the human genome sequence in 2001, advances in high-throughput measurement technologies and efficient sharing of research material through community databases have opened up new views to the study of living organisms and the structure of life. In this thesis, novel computational strategies have been developed to investigate a key functional layer of genetic information, the human transcriptome, which regulates the function of living cells through protein synthesis. The key contributions of the thesis are general exploratory tools for high-throughput data analysis that have provided new insights to cell-biological networks, cancer mechanisms and other aspects of genome function. A central challenge in functional genomics is that high-dimensional genomic observations are associated with high levels of complex and largely unknown sources of variation. By combining statistical evidence across multiple measurement sources and the wealth of background information in genomic data repositories it has been possible to solve some the uncertainties associated with individual observations and to identify functional mechanisms that could not be detected based on individual measurement sources. Statistical learning and probabilistic models provide a natural framework for such modeling tasks. Open source implementations of the key methodological contributions have been released to facilitate further adoption of the developed methods by the research community.Comment: Doctoral thesis. 103 pages, 11 figure

    Investigation of the Sense of Agency in Social Cognition, based on frameworks of Predictive Coding and Active Inference: A simulation study on multimodal imitative interaction

    Get PDF
    When agents interact socially with different intentions, conflicts are difficult to avoid. Although how agents can resolve such problems autonomously has not been determined, dynamic characteristics of agency may shed light on underlying mechanisms. The current study focused on the sense of agency (SoA), a specific aspect of agency referring to congruence between the agent's intention in acting and the outcome. Employing predictive coding and active inference as theoretical frameworks of perception and action generation, we hypothesize that regulation of complexity in the evidence lower bound of an agent's model should affect the strength of the agent's SoA and should have a critical impact on social interactions. We built a computational model of imitative interaction between a robot and a human via visuo-proprioceptive sensation with a variational Bayes recurrent neural network, and simulated the model in the form of pseudo-imitative interaction using recorded human body movement data. A key feature of the model is that each modality's complexity can be regulated differently with a hyperparameter assigned to each module. We first searched for an optimal setting that endows the model with appropriate coordination of multimodal sensation. This revealed that the vision module's complexity should be more tightly regulated than that of the proprioception module. Using the optimally trained model, we examined how changing the tightness of complexity regulation after training affects the strength of the SoA during interactions. The results showed that with looser regulation, an agent tends to act more egocentrically, without adapting to the other. In contrast, with tighter regulation, the agent tends to follow the other by adjusting its intention. We conclude that the tightness of complexity regulation crucially affects the strength of the SoA and the dynamics of interactions between agents.Comment: 23 pages, 8 figure

    Kanerva++: extending The Kanerva Machine with differentiable, locally block allocated latent memory

    Full text link
    Episodic and semantic memory are critical components of the human memory model. The theory of complementary learning systems (McClelland et al., 1995) suggests that the compressed representation produced by a serial event (episodic memory) is later restructured to build a more generalized form of reusable knowledge (semantic memory). In this work we develop a new principled Bayesian memory allocation scheme that bridges the gap between episodic and semantic memory via a hierarchical latent variable model. We take inspiration from traditional heap allocation and extend the idea of locally contiguous memory to the Kanerva Machine, enabling a novel differentiable block allocated latent memory. In contrast to the Kanerva Machine, we simplify the process of memory writing by treating it as a fully feed forward deterministic process, relying on the stochasticity of the read key distribution to disperse information within the memory. We demonstrate that this allocation scheme improves performance in memory conditional image generation, resulting in new state-of-the-art conditional likelihood values on binarized MNIST (<=41.58 nats/image) , binarized Omniglot (<=66.24 nats/image), as well as presenting competitive performance on CIFAR10, DMLab Mazes, Celeb-A and ImageNet32x32
    corecore