18 research outputs found

    Automatic Segmentation of Lung Carcinoma Using 3D Texture Features in 18-FDG PET/CT

    Get PDF

    Advanced machine learning methods for oncological image analysis

    Get PDF
    Cancer is a major public health problem, accounting for an estimated 10 million deaths worldwide in 2020 alone. Rapid advances in the field of image acquisition and hardware development over the past three decades have resulted in the development of modern medical imaging modalities that can capture high-resolution anatomical, physiological, functional, and metabolic quantitative information from cancerous organs. Therefore, the applications of medical imaging have become increasingly crucial in the clinical routines of oncology, providing screening, diagnosis, treatment monitoring, and non/minimally- invasive evaluation of disease prognosis. The essential need for medical images, however, has resulted in the acquisition of a tremendous number of imaging scans. Considering the growing role of medical imaging data on one side and the challenges of manually examining such an abundance of data on the other side, the development of computerized tools to automatically or semi-automatically examine the image data has attracted considerable interest. Hence, a variety of machine learning tools have been developed for oncological image analysis, aiming to assist clinicians with repetitive tasks in their workflow. This thesis aims to contribute to the field of oncological image analysis by proposing new ways of quantifying tumor characteristics from medical image data. Specifically, this thesis consists of six studies, the first two of which focus on introducing novel methods for tumor segmentation. The last four studies aim to develop quantitative imaging biomarkers for cancer diagnosis and prognosis. The main objective of Study I is to develop a deep learning pipeline capable of capturing the appearance of lung pathologies, including lung tumors, and integrating this pipeline into the segmentation networks to leverage the segmentation accuracy. The proposed pipeline was tested on several comprehensive datasets, and the numerical quantifications show the superiority of the proposed prior-aware DL framework compared to the state of the art. Study II aims to address a crucial challenge faced by supervised segmentation models: dependency on the large-scale labeled dataset. In this study, an unsupervised segmentation approach is proposed based on the concept of image inpainting to segment lung and head- neck tumors in images from single and multiple modalities. The proposed autoinpainting pipeline shows great potential in synthesizing high-quality tumor-free images and outperforms a family of well-established unsupervised models in terms of segmentation accuracy. Studies III and IV aim to automatically discriminate the benign from the malignant pulmonary nodules by analyzing the low-dose computed tomography (LDCT) scans. In Study III, a dual-pathway deep classification framework is proposed to simultaneously take into account the local intra-nodule heterogeneities and the global contextual information. Study IV seeks to compare the discriminative power of a series of carefully selected conventional radiomics methods, end-to-end Deep Learning (DL) models, and deep features-based radiomics analysis on the same dataset. The numerical analyses show the potential of fusing the learned deep features into radiomic features for boosting the classification power. Study V focuses on the early assessment of lung tumor response to the applied treatments by proposing a novel feature set that can be interpreted physiologically. This feature set was employed to quantify the changes in the tumor characteristics from longitudinal PET-CT scans in order to predict the overall survival status of the patients two years after the last session of treatments. The discriminative power of the introduced imaging biomarkers was compared against the conventional radiomics, and the quantitative evaluations verified the superiority of the proposed feature set. Whereas Study V focuses on a binary survival prediction task, Study VI addresses the prediction of survival rate in patients diagnosed with lung and head-neck cancer by investigating the potential of spherical convolutional neural networks and comparing their performance against other types of features, including radiomics. While comparable results were achieved in intra- dataset analyses, the proposed spherical-based features show more predictive power in inter-dataset analyses. In summary, the six studies incorporate different imaging modalities and a wide range of image processing and machine-learning techniques in the methods developed for the quantitative assessment of tumor characteristics and contribute to the essential procedures of cancer diagnosis and prognosis

    Data harmonisation for information fusion in digital healthcare: A state-of-the-art systematic review, meta-analysis and future research directions

    Get PDF
    Removing the bias and variance of multicentre data has always been a challenge in large scale digital healthcare studies, which requires the ability to integrate clinical features extracted from data acquired by different scanners and protocols to improve stability and robustness. Previous studies have described various computational approaches to fuse single modality multicentre datasets. However, these surveys rarely focused on evaluation metrics and lacked a checklist for computational data harmonisation studies. In this systematic review, we summarise the computational data harmonisation approaches for multi-modality data in the digital healthcare field, including harmonisation strategies and evaluation metrics based on different theories. In addition, a comprehensive checklist that summarises common practices for data harmonisation studies is proposed to guide researchers to report their research findings more effectively. Last but not least, flowcharts presenting possible ways for methodology and metric selection are proposed and the limitations of different methods have been surveyed for future research

    Heterogeneidad tumoral en imágenes PET-CT

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Ciencias Físicas, Departamento de Estructura de la Materia, Física Térmica y Electrónica, leída el 28/01/2021Cancer is a leading cause of morbidity and mortality [1]. The most frequent cancers worldwide are non–small cell lung carcinoma (NSCLC) and breast cancer [2], being their management a challenging task [3]. Tumor diagnosis is usually made through biopsy [4]. However, medical imaging also plays an important role in diagnosis, staging, response to treatment, and recurrence assessment [5]. Tumor heterogeneity is recognized to be involved in cancer treatment failure, with worse clinical outcomes for highly heterogeneous tumors [6,7]. This leads to the existence of tumor sub-regions with different biological behavior (some more aggressive and treatment-resistant than others) [8-10]. Which are characterized by a different pattern of vascularization, vessel permeability, metabolism, cell proliferation, cell death, and other features, that can be measured by modern medical imaging techniques, including positron emission tomography/computed tomography (PET/CT) [10-12]. Thus, the assessment of tumor heterogeneity through medical images could allow the prediction of therapy response and long-term outcomes of patients with cancer [13]. PET/CT has become essential in oncology [14,15] and is usually evaluated through semiquantitative metabolic parameters, such as maximum/mean standard uptake value (SUVmax, SUVmean) or metabolic tumor volume (MTV), which are valuables as prognostic image-based biomarkers in several tumors [16-17], but these do not assess tumor heterogeneity. Likewise, fluorodeoxyglucose (18F-FDG) PET/CT is important to differentiate malignant from benign solitary pulmonary nodules (SPN), reducing so the number of patients who undergo unnecessary surgical biopsies. Several publications have shown that some quantitative image features, extracted from medical images, are suitable for diagnosis, tumor staging, the prognosis of treatment response, and long-term evolution of cancer patients [18-20]. The process of extracting and relating image features with clinical or biological variables is called “Radiomics” [9,20-24]. Radiomic parameters, such as textural features have been related directly to tumor heterogeneity [25]. This thesis investigated the relationships of the tumor heterogeneity, assessed by 18F-FDG-PET/CT texture analysis, with metabolic parameters and pathologic staging in patients with NSCLC, and explored the diagnostic performance of different metabolic, morphologic, and clinical criteria for classifying (malignant or not) of solitary pulmonary nodules (SPN). Furthermore, 18F-FDG-PET/CT radiomic features of patients with recurrent/metastatic breast cancer were used for constructing predictive models of response to the chemotherapy, based on an optimal combination of several feature selection and machine learning (ML) methods...El cáncer es una de las principales causas de morbilidad y mortalidad. Los más frecuentes son el carcinoma de pulmón de células no pequeñas (NSCLC) y el cáncer de mama, siendo su tratamiento un reto. El diagnóstico se suele realizar mediante biopsia. La heterogeneidad tumoral (HT) está implicada en el fracaso del tratamiento del cáncer, con peores resultados clínicos para tumores muy heterogéneos. Esta conduce a la existencia de subregiones tumorales con diferente comportamiento biológico (algunas más agresivas y resistentes al tratamiento); las cuales se caracterizan por diferentes patrones de vascularización, permeabilidad de los vasos sanguíneos, metabolismo, proliferación y muerte celular, que se pueden medir mediante imágenes médicas, incluida la tomografía por emisión de positrones/tomografía computarizada con fluorodesoxiglucosa (18F-FDG-PET/CT). La evaluación de la HT a través de imágenes médicas, podría mejorar la predicción de la respuesta al tratamiento y de los resultados a largo plazo, en pacientes con cáncer. La 18F-FDG-PET/CT es esencial en oncología, generalmente se evalúa con parámetros metabólicos semicuantitativos, como el valor de captación estándar máximo/medio (SUVmáx, SUVmedio) o el volumen tumoral metabólico (MTV), que tienen un gran valor pronóstico en varios tumores, pero no evalúan la HT. Asimismo, es importante para diferenciar los nódulos pulmonares solitarios (NPS) malignos de los benignos, reduciendo el número de pacientes que van a biopsias quirúrgicas innecesarias. Publicaciones recientes muestran que algunas características cuantitativas, extraídas de las imágenes médicas, son robustas para diagnóstico, estadificación, pronóstico de la respuesta al tratamiento y la evolución, de pacientes con cáncer. El proceso de extraer y relacionar estas características con variables clínicas o biológicas se denomina “Radiomica”. Algunos parámetros radiómicos, como la textura, se han relacionado directamente con la HT. Esta tesis investigó las relaciones entre HT, evaluada mediante análisis de textura (AT) de imágenes 18F-FDG-PET/CT, con parámetros metabólicos y estadificación patológica en pacientes con NSCLC, y exploró el rendimiento diagnóstico de diferentes criterios metabólicos, morfológicos y clínicos para la clasificación de NPS. Además, se usaron características radiómicas de imágenes 18F-FDG-PET/CT de pacientes con cáncer de mama recurrente/metastásico, para construir modelos predictivos de la respuesta a la quimioterapia, combinándose varios métodos de selección de características y aprendizaje automático (ML)...Fac. de Ciencias FísicasTRUEunpu

    [<sup>18</sup>F]fluorination of biorelevant arylboronic acid pinacol ester scaffolds synthesized by convergence techniques

    Get PDF
    Aim: The development of small molecules through convergent multicomponent reactions (MCR) has been boosted during the last decade due to the ability to synthesize, virtually without any side-products, numerous small drug-like molecules with several degrees of structural diversity.(1) The association of positron emission tomography (PET) labeling techniques in line with the “one-pot” development of biologically active compounds has the potential to become relevant not only for the evaluation and characterization of those MCR products through molecular imaging, but also to increase the library of radiotracers available. Therefore, since the [18F]fluorination of arylboronic acid pinacol ester derivatives tolerates electron-poor and electro-rich arenes and various functional groups,(2) the main goal of this research work was to achieve the 18F-radiolabeling of several different molecules synthesized through MCR. Materials and Methods: [18F]Fluorination of boronic acid pinacol esters was first extensively optimized using a benzaldehyde derivative in relation to the ideal amount of Cu(II) catalyst and precursor to be used, as well as the reaction solvent. Radiochemical conversion (RCC) yields were assessed by TLC-SG. The optimized radiolabeling conditions were subsequently applied to several structurally different MCR scaffolds comprising biologically relevant pharmacophores (e.g. β-lactam, morpholine, tetrazole, oxazole) that were synthesized to specifically contain a boronic acid pinacol ester group. Results: Radiolabeling with fluorine-18 was achieved with volumes (800 μl) and activities (≤ 2 GBq) compatible with most radiochemistry techniques and modules. In summary, an increase in the quantities of precursor or Cu(II) catalyst lead to higher conversion yields. An optimal amount of precursor (0.06 mmol) and Cu(OTf)2(py)4 (0.04 mmol) was defined for further reactions, with DMA being a preferential solvent over DMF. RCC yields from 15% to 76%, depending on the scaffold, were reproducibly achieved. Interestingly, it was noticed that the structure of the scaffolds, beyond the arylboronic acid, exerts some influence in the final RCC, with electron-withdrawing groups in the para position apparently enhancing the radiolabeling yield. Conclusion: The developed method with high RCC and reproducibility has the potential to be applied in line with MCR and also has a possibility to be incorporated in a later stage of this convergent “one-pot” synthesis strategy. Further studies are currently ongoing to apply this radiolabeling concept to fluorine-containing approved drugs whose boronic acid pinacol ester precursors can be synthesized through MCR (e.g. atorvastatin)
    corecore