1,609 research outputs found

    Sparse and Smooth Prior for Bayesian Linear Regression with Application to ETEX Data

    Full text link
    Sparsity of the solution of a linear regression model is a common requirement, and many prior distributions have been designed for this purpose. A combination of the sparsity requirement with smoothness of the solution is also common in application, however, with considerably fewer existing prior models. In this paper, we compare two prior structures, the Bayesian fused lasso (BFL) and least-squares with adaptive prior covariance matrix (LS-APC). Since only variational solution was published for the latter, we derive a Gibbs sampling algorithm for its inference and Bayesian model selection. The method is designed for high dimensional problems, therefore, we discuss numerical issues associated with evaluation of the posterior. In simulation, we show that the LS-APC prior achieves results comparable to that of the Bayesian Fused Lasso for piecewise constant parameter and outperforms the BFL for parameters of more general shapes. Another advantage of the LS-APC priors is revealed in real application to estimation of the release profile of the European Tracer Experiment (ETEX). Specifically, the LS-APC model provides more conservative uncertainty bounds when the regressor matrix is not informative

    Online Low-Rank Subspace Learning from Incomplete Data: A Bayesian View

    Full text link
    Extracting the underlying low-dimensional space where high-dimensional signals often reside has long been at the center of numerous algorithms in the signal processing and machine learning literature during the past few decades. At the same time, working with incomplete (partly observed) large scale datasets has recently been commonplace for diverse reasons. This so called {\it big data era} we are currently living calls for devising online subspace learning algorithms that can suitably handle incomplete data. Their envisaged objective is to {\it recursively} estimate the unknown subspace by processing streaming data sequentially, thus reducing computational complexity, while obviating the need for storing the whole dataset in memory. In this paper, an online variational Bayes subspace learning algorithm from partial observations is presented. To account for the unawareness of the true rank of the subspace, commonly met in practice, low-rankness is explicitly imposed on the sought subspace data matrix by exploiting sparse Bayesian learning principles. Moreover, sparsity, {\it simultaneously} to low-rankness, is favored on the subspace matrix by the sophisticated hierarchical Bayesian scheme that is adopted. In doing so, the proposed algorithm becomes adept in dealing with applications whereby the underlying subspace may be also sparse, as, e.g., in sparse dictionary learning problems. As shown, the new subspace tracking scheme outperforms its state-of-the-art counterparts in terms of estimation accuracy, in a variety of experiments conducted on simulated and real data

    An Adaptive Markov Random Field for Structured Compressive Sensing

    Full text link
    Exploiting intrinsic structures in sparse signals underpins the recent progress in compressive sensing (CS). The key for exploiting such structures is to achieve two desirable properties: generality (\ie, the ability to fit a wide range of signals with diverse structures) and adaptability (\ie, being adaptive to a specific signal). Most existing approaches, however, often only achieve one of these two properties. In this study, we propose a novel adaptive Markov random field sparsity prior for CS, which not only is able to capture a broad range of sparsity structures, but also can adapt to each sparse signal through refining the parameters of the sparsity prior with respect to the compressed measurements. To maximize the adaptability, we also propose a new sparse signal estimation where the sparse signals, support, noise and signal parameter estimation are unified into a variational optimization problem, which can be effectively solved with an alternative minimization scheme. Extensive experiments on three real-world datasets demonstrate the effectiveness of the proposed method in recovery accuracy, noise tolerance, and runtime.Comment: 13 pages, submitted to IEEE Transactions on Image Processin

    Decomposition into Low-rank plus Additive Matrices for Background/Foreground Separation: A Review for a Comparative Evaluation with a Large-Scale Dataset

    Full text link
    Recent research on problem formulations based on decomposition into low-rank plus sparse matrices shows a suitable framework to separate moving objects from the background. The most representative problem formulation is the Robust Principal Component Analysis (RPCA) solved via Principal Component Pursuit (PCP) which decomposes a data matrix in a low-rank matrix and a sparse matrix. However, similar robust implicit or explicit decompositions can be made in the following problem formulations: Robust Non-negative Matrix Factorization (RNMF), Robust Matrix Completion (RMC), Robust Subspace Recovery (RSR), Robust Subspace Tracking (RST) and Robust Low-Rank Minimization (RLRM). The main goal of these similar problem formulations is to obtain explicitly or implicitly a decomposition into low-rank matrix plus additive matrices. In this context, this work aims to initiate a rigorous and comprehensive review of the similar problem formulations in robust subspace learning and tracking based on decomposition into low-rank plus additive matrices for testing and ranking existing algorithms for background/foreground separation. For this, we first provide a preliminary review of the recent developments in the different problem formulations which allows us to define a unified view that we called Decomposition into Low-rank plus Additive Matrices (DLAM). Then, we examine carefully each method in each robust subspace learning/tracking frameworks with their decomposition, their loss functions, their optimization problem and their solvers. Furthermore, we investigate if incremental algorithms and real-time implementations can be achieved for background/foreground separation. Finally, experimental results on a large-scale dataset called Background Models Challenge (BMC 2012) show the comparative performance of 32 different robust subspace learning/tracking methods.Comment: 121 pages, 5 figures, submitted to Computer Science Review. arXiv admin note: text overlap with arXiv:1312.7167, arXiv:1109.6297, arXiv:1207.3438, arXiv:1105.2126, arXiv:1404.7592, arXiv:1210.0805, arXiv:1403.8067 by other authors, Computer Science Review, November 201

    Lasso Meets Horseshoe : A Survey

    Full text link
    The goal of this paper is to contrast and survey the major advances in two of the most commonly used high-dimensional techniques, namely, the Lasso and horseshoe regularization. Lasso is a gold standard for predictor selection while horseshoe is a state-of-the-art Bayesian estimator for sparse signals. Lasso is fast and scalable and uses convex optimization whilst the horseshoe is non-convex. Our novel perspective focuses on three aspects: (i) theoretical optimality in high dimensional inference for the Gaussian sparse model and beyond, (ii) efficiency and scalability of computation and (iii) methodological development and performance.Comment: 32 pages, 4 figure

    Bayesian inference in high-dimensional models

    Full text link
    Models with dimension more than the available sample size are now commonly used in various applications. A sensible inference is possible using a lower-dimensional structure. In regression problems with a large number of predictors, the model is often assumed to be sparse, with only a few predictors active. Interdependence between a large number of variables is succinctly described by a graphical model, where variables are represented by nodes on a graph and an edge between two nodes is used to indicate their conditional dependence given other variables. Many procedures for making inferences in the high-dimensional setting, typically using penalty functions to induce sparsity in the solution obtained by minimizing a loss function, were developed. Bayesian methods have been proposed for such problems more recently, where the prior takes care of the sparsity structure. These methods have the natural ability to also automatically quantify the uncertainty of the inference through the posterior distribution. Theoretical studies of Bayesian procedures in high-dimension have been carried out recently. Questions that arise are, whether the posterior distribution contracts near the true value of the parameter at the minimax optimal rate, whether the correct lower-dimensional structure is discovered with high posterior probability, and whether a credible region has adequate frequentist coverage. In this paper, we review these properties of Bayesian and related methods for several high-dimensional models such as many normal means problem, linear regression, generalized linear models, Gaussian and non-Gaussian graphical models. Effective computational approaches are also discussed.Comment: Review chapter, 42 page

    On the Beta Prime Prior for Scale Parameters in High-Dimensional Bayesian Regression Models

    Full text link
    We study high-dimensional Bayesian linear regression with a general beta prime distribution for the scale parameter. Under the assumption of sparsity, we show that appropriate selection of the hyperparameters in the beta prime prior leads to the (near) minimax posterior contraction rate when p≫np \gg n. For finite samples, we propose a data-adaptive method for estimating the hyperparameters based on marginal maximum likelihood (MML). This enables our prior to adapt to both sparse and dense settings, and under our proposed empirical Bayes procedure, the MML estimates are never at risk of collapsing to zero. We derive efficient Monte Carlo EM and variational EM algorithms for implementing our model, which are available in the R package NormalBetaPrime. Simulations and analysis of a gene expression data set illustrate our model's self-adaptivity to varying levels of sparsity and signal strengths.Comment: 37 pages, 4 figures, 3 tables. We have added a section on posterior computation and corrected the theoretical results. Sections on normal means estimation were removed in this updated technical repor

    Iteratively Reweighted â„“1\ell_1 Approaches to Sparse Composite Regularization

    Full text link
    Motivated by the observation that a given signal x\boldsymbol{x} admits sparse representations in multiple dictionaries Ψd\boldsymbol{\Psi}_d but with varying levels of sparsity across dictionaries, we propose two new algorithms for the reconstruction of (approximately) sparse signals from noisy linear measurements. Our first algorithm, Co-L1, extends the well-known lasso algorithm from the L1 regularizer ∥Ψx∥1\|\boldsymbol{\Psi x}\|_1 to composite regularizers of the form ∑dλd∥Ψdx∥1\sum_d \lambda_d \|\boldsymbol{\Psi}_d \boldsymbol{x}\|_1 while self-adjusting the regularization weights λd\lambda_d. Our second algorithm, Co-IRW-L1, extends the well-known iteratively reweighted L1 algorithm to the same family of composite regularizers. We provide several interpretations of both algorithms: i) majorization-minimization (MM) applied to a non-convex log-sum-type penalty, ii) MM applied to an approximate ℓ0\ell_0-type penalty, iii) MM applied to Bayesian MAP inference under a particular hierarchical prior, and iv) variational expectation-maximization (VEM) under a particular prior with deterministic unknown parameters. A detailed numerical study suggests that our proposed algorithms yield significantly improved recovery SNR when compared to their non-composite L1 and IRW-L1 counterparts

    Supervised Multiscale Dimension Reduction for Spatial Interaction Networks

    Full text link
    We introduce a multiscale supervised dimension reduction method for SPatial Interaction Network (SPIN) data, which consist of a collection of spatially coordinated interactions. This type of predictor arises when the sampling unit of data is composed of a collection of primitive variables, each of them being essentially unique, so that it becomes necessary to group the variables in order to simplify the representation and enhance interpretability. In this paper, we introduce an empirical Bayes approach called spinlets, which first constructs a partitioning tree to guide the reduction over multiple spatial granularities, and then refines the representation of predictors according to the relevance to the response. We consider an inverse Poisson regression model and propose a new multiscale generalized double Pareto prior, which is induced via a tree-structured parameter expansion scheme. Our approach is motivated by an application in soccer analytics, in which we obtain compact vectorial representations and readily interpretable visualizations of the complex network objects, supervised by the response of interest.Comment: 30 pages, 12 figures, revised for clarity and concisenes

    Spike-and-Slab Meets LASSO: A Review of the Spike-and-Slab LASSO

    Full text link
    High-dimensional data sets have become ubiquitous in the past few decades, often with many more covariates than observations. In the frequentist setting, penalized likelihood methods are the most popular approach for variable selection and estimation in high-dimensional data. In the Bayesian framework, spike-and-slab methods are commonly used as probabilistic constructs for high-dimensional modeling. Within the context of linear regression, Rockova and George (2018) introduced the spike-and-slab LASSO (SSL), an approach based on a prior which provides a continuum between the penalized likelihood LASSO and the Bayesian point-mass spike-and-slab formulations. Since its inception, the spike-and-slab LASSO has been extended to a variety of contexts, including generalized linear models, factor analysis, graphical models, and nonparametric regression. The goal of this paper is to survey the landscape surrounding spike-and-slab LASSO methodology. First we elucidate the attractive properties and the computational tractability of SSL priors in high dimensions. We then review methodological developments of the SSL and outline several theoretical developments. We illustrate the methodology on both simulated and real datasets.Comment: 34 pages, 2 tables, 3 figures. Section 3.3 was added to illustrate the metho
    • …
    corecore