11,246 research outputs found

    Deep Recurrent Generative Decoder for Abstractive Text Summarization

    Full text link
    We propose a new framework for abstractive text summarization based on a sequence-to-sequence oriented encoder-decoder model equipped with a deep recurrent generative decoder (DRGN). Latent structure information implied in the target summaries is learned based on a recurrent latent random model for improving the summarization quality. Neural variational inference is employed to address the intractable posterior inference for the recurrent latent variables. Abstractive summaries are generated based on both the generative latent variables and the discriminative deterministic states. Extensive experiments on some benchmark datasets in different languages show that DRGN achieves improvements over the state-of-the-art methods.Comment: 10 pages, EMNLP 201

    Disentangling Factors of Variation with Cycle-Consistent Variational Auto-Encoders

    Full text link
    Generative models that learn disentangled representations for different factors of variation in an image can be very useful for targeted data augmentation. By sampling from the disentangled latent subspace of interest, we can efficiently generate new data necessary for a particular task. Learning disentangled representations is a challenging problem, especially when certain factors of variation are difficult to label. In this paper, we introduce a novel architecture that disentangles the latent space into two complementary subspaces by using only weak supervision in form of pairwise similarity labels. Inspired by the recent success of cycle-consistent adversarial architectures, we use cycle-consistency in a variational auto-encoder framework. Our non-adversarial approach is in contrast with the recent works that combine adversarial training with auto-encoders to disentangle representations. We show compelling results of disentangled latent subspaces on three datasets and compare with recent works that leverage adversarial training

    Language as a Latent Variable: Discrete Generative Models for Sentence Compression

    Full text link
    In this work we explore deep generative models of text in which the latent representation of a document is itself drawn from a discrete language model distribution. We formulate a variational auto-encoder for inference in this model and apply it to the task of compressing sentences. In this application the generative model first draws a latent summary sentence from a background language model, and then subsequently draws the observed sentence conditioned on this latent summary. In our empirical evaluation we show that generative formulations of both abstractive and extractive compression yield state-of-the-art results when trained on a large amount of supervised data. Further, we explore semi-supervised compression scenarios where we show that it is possible to achieve performance competitive with previously proposed supervised models while training on a fraction of the supervised data.Comment: EMNLP 201
    • …
    corecore