1,630 research outputs found

    Cluster Variation Method in Statistical Physics and Probabilistic Graphical Models

    Full text link
    The cluster variation method (CVM) is a hierarchy of approximate variational techniques for discrete (Ising--like) models in equilibrium statistical mechanics, improving on the mean--field approximation and the Bethe--Peierls approximation, which can be regarded as the lowest level of the CVM. In recent years it has been applied both in statistical physics and to inference and optimization problems formulated in terms of probabilistic graphical models. The foundations of the CVM are briefly reviewed, and the relations with similar techniques are discussed. The main properties of the method are considered, with emphasis on its exactness for particular models and on its asymptotic properties. The problem of the minimization of the variational free energy, which arises in the CVM, is also addressed, and recent results about both provably convergent and message-passing algorithms are discussed.Comment: 36 pages, 17 figure

    Projecting Ising Model Parameters for Fast Mixing

    Full text link
    Inference in general Ising models is difficult, due to high treewidth making tree-based algorithms intractable. Moreover, when interactions are strong, Gibbs sampling may take exponential time to converge to the stationary distribution. We present an algorithm to project Ising model parameters onto a parameter set that is guaranteed to be fast mixing, under several divergences. We find that Gibbs sampling using the projected parameters is more accurate than with the original parameters when interaction strengths are strong and when limited time is available for sampling.Comment: Advances in Neural Information Processing Systems 201

    Finding Non-overlapping Clusters for Generalized Inference Over Graphical Models

    Full text link
    Graphical models use graphs to compactly capture stochastic dependencies amongst a collection of random variables. Inference over graphical models corresponds to finding marginal probability distributions given joint probability distributions. In general, this is computationally intractable, which has led to a quest for finding efficient approximate inference algorithms. We propose a framework for generalized inference over graphical models that can be used as a wrapper for improving the estimates of approximate inference algorithms. Instead of applying an inference algorithm to the original graph, we apply the inference algorithm to a block-graph, defined as a graph in which the nodes are non-overlapping clusters of nodes from the original graph. This results in marginal estimates of a cluster of nodes, which we further marginalize to get the marginal estimates of each node. Our proposed block-graph construction algorithm is simple, efficient, and motivated by the observation that approximate inference is more accurate on graphs with longer cycles. We present extensive numerical simulations that illustrate our block-graph framework with a variety of inference algorithms (e.g., those in the libDAI software package). These simulations show the improvements provided by our framework.Comment: Extended the previous version to include extensive numerical simulations. See http://www.ima.umn.edu/~dvats/GeneralizedInference.html for code and dat
    • …
    corecore