15,894 research outputs found

    Graphs in machine learning: an introduction

    Full text link
    Graphs are commonly used to characterise interactions between objects of interest. Because they are based on a straightforward formalism, they are used in many scientific fields from computer science to historical sciences. In this paper, we give an introduction to some methods relying on graphs for learning. This includes both unsupervised and supervised methods. Unsupervised learning algorithms usually aim at visualising graphs in latent spaces and/or clustering the nodes. Both focus on extracting knowledge from graph topologies. While most existing techniques are only applicable to static graphs, where edges do not evolve through time, recent developments have shown that they could be extended to deal with evolving networks. In a supervised context, one generally aims at inferring labels or numerical values attached to nodes using both the graph and, when they are available, node characteristics. Balancing the two sources of information can be challenging, especially as they can disagree locally or globally. In both contexts, supervised and un-supervised, data can be relational (augmented with one or several global graphs) as described above, or graph valued. In this latter case, each object of interest is given as a full graph (possibly completed by other characteristics). In this context, natural tasks include graph clustering (as in producing clusters of graphs rather than clusters of nodes in a single graph), graph classification, etc. 1 Real networks One of the first practical studies on graphs can be dated back to the original work of Moreno [51] in the 30s. Since then, there has been a growing interest in graph analysis associated with strong developments in the modelling and the processing of these data. Graphs are now used in many scientific fields. In Biology [54, 2, 7], for instance, metabolic networks can describe pathways of biochemical reactions [41], while in social sciences networks are used to represent relation ties between actors [66, 56, 36, 34]. Other examples include powergrids [71] and the web [75]. Recently, networks have also been considered in other areas such as geography [22] and history [59, 39]. In machine learning, networks are seen as powerful tools to model problems in order to extract information from data and for prediction purposes. This is the object of this paper. For more complete surveys, we refer to [28, 62, 49, 45]. In this section, we introduce notations and highlight properties shared by most real networks. In Section 2, we then consider methods aiming at extracting information from a unique network. We will particularly focus on clustering methods where the goal is to find clusters of vertices. Finally, in Section 3, techniques that take a series of networks into account, where each network i

    Topological Feature Based Classification

    Full text link
    There has been a lot of interest in developing algorithms to extract clusters or communities from networks. This work proposes a method, based on blockmodelling, for leveraging communities and other topological features for use in a predictive classification task. Motivated by the issues faced by the field of community detection and inspired by recent advances in Bayesian topic modelling, the presented model automatically discovers topological features relevant to a given classification task. In this way, rather than attempting to identify some universal best set of clusters for an undefined goal, the aim is to find the best set of clusters for a particular purpose. Using this method, topological features can be validated and assessed within a given context by their predictive performance. The proposed model differs from other relational and semi-supervised learning models as it identifies topological features to explain the classification decision. In a demonstration on a number of real networks the predictive capability of the topological features are shown to rival the performance of content based relational learners. Additionally, the model is shown to outperform graph-based semi-supervised methods on directed and approximately bipartite networks.Comment: Awarded 3rd Best Student Paper at 14th International Conference on Information Fusion 201

    Model Selection in Overlapping Stochastic Block Models

    Full text link
    Networks are a commonly used mathematical model to describe the rich set of interactions between objects of interest. Many clustering methods have been developed in order to partition such structures, among which several rely on underlying probabilistic models, typically mixture models. The relevant hidden structure may however show overlapping groups in several applications. The Overlapping Stochastic Block Model (2011) has been developed to take this phenomenon into account. Nevertheless, the problem of the choice of the number of classes in the inference step is still open. To tackle this issue, we consider the proposed model in a Bayesian framework and develop a new criterion based on a non asymptotic approximation of the marginal log-likelihood. We describe how the criterion can be computed through a variational Bayes EM algorithm, and demonstrate its efficiency by running it on both simulated and real data.Comment: articl

    Clustering based on Random Graph Model embedding Vertex Features

    Full text link
    Large datasets with interactions between objects are common to numerous scientific fields (i.e. social science, internet, biology...). The interactions naturally define a graph and a common way to explore or summarize such dataset is graph clustering. Most techniques for clustering graph vertices just use the topology of connections ignoring informations in the vertices features. In this paper, we provide a clustering algorithm exploiting both types of data based on a statistical model with latent structure characterizing each vertex both by a vector of features as well as by its connectivity. We perform simulations to compare our algorithm with existing approaches, and also evaluate our method with real datasets based on hyper-textual documents. We find that our algorithm successfully exploits whatever information is found both in the connectivity pattern and in the features

    Dynamic Bayesian Combination of Multiple Imperfect Classifiers

    Get PDF
    Classifier combination methods need to make best use of the outputs of multiple, imperfect classifiers to enable higher accuracy classifications. In many situations, such as when human decisions need to be combined, the base decisions can vary enormously in reliability. A Bayesian approach to such uncertain combination allows us to infer the differences in performance between individuals and to incorporate any available prior knowledge about their abilities when training data is sparse. In this paper we explore Bayesian classifier combination, using the computationally efficient framework of variational Bayesian inference. We apply the approach to real data from a large citizen science project, Galaxy Zoo Supernovae, and show that our method far outperforms other established approaches to imperfect decision combination. We go on to analyse the putative community structure of the decision makers, based on their inferred decision making strategies, and show that natural groupings are formed. Finally we present a dynamic Bayesian classifier combination approach and investigate the changes in base classifier performance over time.Comment: 35 pages, 12 figure
    • …
    corecore