323 research outputs found

    Robust low-power digital circuit design in nano-CMOS technologies

    Get PDF
    Device scaling has resulted in large scale integrated, high performance, low-power, and low cost systems. However the move towards sub-100 nm technology nodes has increased variability in device characteristics due to large process variations. Variability has severe implications on digital circuit design by causing timing uncertainties in combinational circuits, degrading yield and reliability of memory elements, and increasing power density due to slow scaling of supply voltage. Conventional design methods add large pessimistic safety margins to mitigate increased variability, however, they incur large power and performance loss as the combination of worst cases occurs very rarely. In-situ monitoring of timing failures provides an opportunity to dynamically tune safety margins in proportion to on-chip variability that can significantly minimize power and performance losses. We demonstrated by simulations two delay sensor designs to detect timing failures in advance that can be coupled with different compensation techniques such as voltage scaling, body biasing, or frequency scaling to avoid actual timing failures. Our simulation results using 45 nm and 32 nm technology BSIM4 models indicate significant reduction in total power consumption under temperature and statistical variations. Future work involves using dual sensing to avoid useless voltage scaling that incurs a speed loss. SRAM cache is the first victim of increased process variations that requires handcrafted design to meet area, power, and performance requirements. We have proposed novel 6 transistors (6T), 7 transistors (7T), and 8 transistors (8T)-SRAM cells that enable variability tolerant and low-power SRAM cache designs. Increased sense-amplifier offset voltage due to device mismatch arising from high variability increases delay and power consumption of SRAM design. We have proposed two novel design techniques to reduce offset voltage dependent delays providing a high speed low-power SRAM design. Increasing leakage currents in nano-CMOS technologies pose a major challenge to a low-power reliable design. We have investigated novel segmented supply voltage architecture to reduce leakage power of the SRAM caches since they occupy bulk of the total chip area and power. Future work involves developing leakage reduction methods for the combination logic designs including SRAM peripherals

    Physical Unclonable Function Reliability on Reconfigurable Hardware and Reliability Degradation with Temperature and Supply Voltage Variations

    Get PDF
    A hardware security solution using a Physical Unclonable Function (PUF) is a promising approach to ensure security for physical systems. PUF utilizes the inherent instance-specific parameters of physical objects and it is evaluated based on the performance parameters such as uniqueness, reliability, randomness, and tamper evidence of the Challenge and Response Pairs (CRPs). These performance parameters are affected by operating conditions such as temperature and supply voltage variations. In addition, PUF implementation on Field Programmable Gate Array (FPGA) platform is proven to be more complicated than PUF implementation on Application-Specific Integrated Circuit (ASIC) technologies. The automatic placement and routing of logic cells in FPGA can affect the performance of PUFs due to path delay imbalance. In this work, the impact of power supply and temperature variations, on the reliability of an arbiter PUF is studied. Simulation results are conducted to determine the effects of these varying conditions on the CRPs. Simulation results show that ± 10% of power supply variation can affect the reliability of an arbiter PUF by about 51%, similarly temperature fluctuation between -40 0C and +60 0C reduces the PUF reliability by 58%. In addition, a new methodology to implement a reliable arbiter PUF on an FPGA platform is presented. Instead of using an extra delay measurement module, the Chip Planner tool for FPGA is used for manually placement to minimize the path delay misalignment to less than 8 ps

    PUFs based on Coupled Oscillators Static Entropy

    Get PDF
    We live in a digital era, this led to a shift from traditional industry to a society focused on information and communication technologies. The amount of shared information is exponen- tially growing every year. Protecting all this shared information is keeping everyone’s privacy, is making sure the information is authentic, is keeping everyone safe. The solution for such problems is cryptography using hardware-based, System on Chip, SoC solutions such as Random Number Generators, RNGs, and Physical Unclonable Functions, PUFs. RNGs generate random keys from random processes that occurs inside the system. PUFs generate fixed random keys using random processes that originated in the fabrication process of the chip. The objective of this work is to study and compare a static entropy source based on coupled relaxation oscillators against a state-of-the-art architecture like the static entropy source based on ring oscillators, in advanced 130nm technology. The characteristic studied were, area, power consumption, entropy, resistance to temperature, and supply voltage varia- tions. Compared to the ring oscillator implementation, the static entropy source designed showed promising results as a static entropy source, however, it revealed poor results in terms of area, power consumption, and entropy. Such results mean, the coupled relaxation oscillator may not be good at generating random numbers, however, it may be good at keeping its state when under temperature and supply voltage variations.Vivemos numa era digital, o que levou a uma mudança da indústria tradicional para uma sociedade centrada sobre as tecnologias da informação e da comunicação. A quantidade de informação partilhada está a crescer exponencialmente todos os anos. Proteger toda esta in- formação partilhada é manter a privacidade de todos, é garantir que a informação é autêntica, está a manter todos seguros. A solução para tais problemas é a criptografia com base em soluções de hardware, Sys- tem on Chip, SoC tais como Geradores de Números Aleatórios, RNGs e Funções Físicas Inclo- náveis, PUFs. Os RNGs geram chaves aleatórias a partir de processos aleatórios que ocorrem no interior do sistema. Os PUFs geram chaves aleatórias fixas utilizando processos aleatórios que se originaram no processo de fabrico do chip. O principal objetivo deste trabalho é estudar e comparar uma fonte estática de entropia baseada em osciladores de relaxação acoplados contra uma arquitetura de estado de arte como a fonte estática de entropia baseada em osci- ladores de anel, em tecnologia avançada de 130nm. As características estudadas foram, a área, o consumo energia, a entropia, e a resistência à temperatura e variações de tensão de alimen- tação. Em comparação com a implementação do oscilador do anel, a fonte estática de entropia projetada mostrou resultados promissores como fonte estática de entropia, no entanto, reve- lou maus resultados em termos de área, consumo de energia e entropia. Estes resultados sig- nificam que o oscilador de relaxação acoplado pode não ser bom a gerar números aleatórios, no entanto, pode ser bom para manter o seu estado quando sujeito a variações de temperatura e tensão de alimentação

    SRAM PUF의 신뢰성 개선을 위한 전원 공급 기법

    Get PDF
    학위논문 (석사) -- 서울대학교 대학원 : 융합과학기술대학원 융합과학부(지능형융합시스템전공), 2021. 2. 전동석.PUF (Physically Unclonable Function)은 하드웨어 레벨의 인증 과 정에서 널리 이용되는 방법이다. 그 중에서도 SRAM PUF는 가장 잘 알 려진 PUF의 방법론이다. 그러나 예측 불가능한 동작으로 인해 발생되는 낮은 재생산성과 전원 공급 과정에서 발생하는 노이즈의 문제를 가지고 있다. 본 논문에서는 효과적으로 SRAM PUF의 재생산성을 향상시킬 수 있는 두 가지 전원 공급 기법을 제안한다. 제시한 기법들은 값이 산출되 는 영역 혹은 전원 공급원의 기울기(ramp-up 시간)를 조절함으로써 원 하지 않는 비트의 뒤집힘(flipping) 현상을 줄인다. 180nm 공정으로 제 작된 테스트 칩을 이용한 측정 결과 재생산성이 2.2배 향상되었을 뿐만 아니라 NUBs(Native Unstable Bits)는 54.87% 그리고 BER (Bit Error Rate)는 55.05% 감소한 것을 확인하였다.Physically unclonable function (PUF) is a widely used hardware-level identification method. SRAM-based PUFs are the most well-known PUF topology, but they typically suffer from low reproducibility due to non-deterministic behaviors and noise during power-up process. In this work, we propose two power-up control techniques that effectively improve reproducibility of the SRAM PUFs. The techniques reduce undesirable bit flipping during evaluation by controlling either evaluation region or power supply ramp-up speed. Measurement results from the 180 nm test chip confirm that native unstable bits (NUBs) are reduced by 54.87% and bit error rate (BER) decreases by 55.05% while reproducibility increases by 2.2×.Chapter 1 Introduction 1 1.1 PUF in Hardware Securit 1 1.2 Prior Works and Motivation 2 Chapter 2 Related works and Motivation 5 2.1 Uniqueness 7 2.2 Reproducibility 7 2.3 Hold Static Noise Margin (SNM) 8 2.4 Bit Error Rate (BER) 9 2.5 PUF Static Noise Margin Ratio (PSNMratio) 9 Chapter 3 Microarchitecture-Aware Code Generation 11 3.1 Scheme 1: Developing Fingerprint in Sub-Threshold Region 13 3.2 Scheme 2: Controlling Voltage Ramp-up Speed 17 Chapter 4 Experimental Evaluation 19 4.1 Experimental Setup 19 4.2 Evaluation Results 21 Chapter 5 Conclusion 28 Bibliography 29 Abstract in Korean 33Maste

    Circuits and Systems Advances in Near Threshold Computing

    Get PDF
    Modern society is witnessing a sea change in ubiquitous computing, in which people have embraced computing systems as an indispensable part of day-to-day existence. Computation, storage, and communication abilities of smartphones, for example, have undergone monumental changes over the past decade. However, global emphasis on creating and sustaining green environments is leading to a rapid and ongoing proliferation of edge computing systems and applications. As a broad spectrum of healthcare, home, and transport applications shift to the edge of the network, near-threshold computing (NTC) is emerging as one of the promising low-power computing platforms. An NTC device sets its supply voltage close to its threshold voltage, dramatically reducing the energy consumption. Despite showing substantial promise in terms of energy efficiency, NTC is yet to see widescale commercial adoption. This is because circuits and systems operating with NTC suffer from several problems, including increased sensitivity to process variation, reliability problems, performance degradation, and security vulnerabilities, to name a few. To realize its potential, we need designs, techniques, and solutions to overcome these challenges associated with NTC circuits and systems. The readers of this book will be able to familiarize themselves with recent advances in electronics systems, focusing on near-threshold computing

    Novel Transistor Resistance Variation-based Physical Unclonable Functions with On-Chip Voltage-to-Digital Converter Designed for Use in Cryptographic and Authentication Applications

    Get PDF
    Security mechanisms such as encryption, authentication, and feature activation depend on the integrity of embedded secret keys. Currently, this keying material is stored as digital bitstrings in non-volatile memory on FPGAs and ASICs. However, secrets stored this way are not secure against a determined adversary, who can use specialized probing attacks to uncover the secret. Furthermore, storing these pre-determined bitstrings suffers from the disadvantage of not being able to generate the key only when needed. Physical Unclonable Functions (PUFs) have emerged as a superior alternative to this. A PUF is an embedded Integrated Circuit (IC) structure that is designed to leverage random variations in physical parameters of on-chip components as the source of entropy for generating random and unique bitstrings. PUFs also incorporate an on-chip infrastructure for measuring and digitizing these variations in order to produce bitstrings. Additionally, PUFs are designed to reproduce a bitstring on-demand and therefore eliminate the need for on-chip storage. In this work, two novel PUFs are presented that leverage the random variations observed in the resistance of transistors. A thorough analysis of the randomness, uniqueness and stability characteristics of the bitstrings generated by these PUFs is presented. All results shown are based on an exhaustive testing of a set of 63 chips designed with numerous copies of the PUFs on each chip and fabricated in a 90nm nine-metal layer technology. An on-chip voltage-to-digital conversion technique is also presented and tested on the set of 63 chips. Statistical results of the bitstrings generated by the on-chip digitization technique are compared with that of the voltage-derived bitstrings to evaluate the efficacy of the digitization technique. One of the most important quality metrics of the PUF and the on-chip voltage-to-digital converter, the stability, is evaluated through a lengthy temperature-voltage testing over the range of -40C to +85C and voltage variations of +/- 10% of the nominal supply voltage. The stability of both the bitstrings and the underlying physical parameters is evaluated for the PUFs using the data collected from the hardware experiments and supported with software simulations conducted on the devices. Several novel techniques are proposed and successfully tested that address known issues related to instability of PUFs to changing temperature and voltage conditions, thus rendering our PUFs more resilient to these changing conditions faced in practical use. Lastly, an analysis of the stability to changing temperature and voltage variations of a third PUF that leverages random variations in the resistance of the metal wires in the power and ground grids of a chip is also presented

    Radiation Tolerant Electronics, Volume II

    Get PDF
    Research on radiation tolerant electronics has increased rapidly over the last few years, resulting in many interesting approaches to model radiation effects and design radiation hardened integrated circuits and embedded systems. This research is strongly driven by the growing need for radiation hardened electronics for space applications, high-energy physics experiments such as those on the large hadron collider at CERN, and many terrestrial nuclear applications, including nuclear energy and safety management. With the progressive scaling of integrated circuit technologies and the growing complexity of electronic systems, their ionizing radiation susceptibility has raised many exciting challenges, which are expected to drive research in the coming decade.After the success of the first Special Issue on Radiation Tolerant Electronics, the current Special Issue features thirteen articles highlighting recent breakthroughs in radiation tolerant integrated circuit design, fault tolerance in FPGAs, radiation effects in semiconductor materials and advanced IC technologies and modelling of radiation effects

    A hardware-embedded, delay-based PUF engine designed for use in cryptographic and authentication applications

    Get PDF
    Cryptographic and authentication applications in application-specific integrated circuits (ASICs) and field-programmable gate arrays (FPGAs), as well as codes for the activation of on-chip features, require the use of embedded secret information. The generation of secret bitstrings using physical unclonable functions, or PUFs, provides several distinct advantages over conventional methods, including the elimination of costly non-volatile memory, and the potential to increase the random bits available to applications. In this dissertation, a Hardware-Embedded Delay PUF (HELP) is proposed that is designed to leverage path delay variations that occur in the core logic macros of a chip to create random bitstrings. A thorough discussion is provided of the operational details of an embedded path timing structure called REBEL that is used by HELP to provide the timing functionality upon which HELP relies for the entropy source for the cryptographic quality of the bitstrings. Further details of the FPGA-based implementation used to prove the viability of the HELP PUF concept are included, along with a discussion of the evolution of the techniques employed in realizing the final PUF engine design. The bitstrings produced by a set of 30 FPGA boards are evaluated with regard to several statistical quality metrics including uniqueness, randomness, and stability. The stability characteristics of the bitstrings are evaluated by subjecting the FPGAs to commercial-grade temperature and power supply voltage variations. In particular, this work evaluates the reproducibility of the bitstrings generated at 0C, 25C, and 70C, and 10% of the rated supply voltage. A pair of error avoidance schemes are proposed and presented that provide significant improvements to the HELP PUF\u27s resiliency against bit-flip errors in the bitstrings
    corecore