75 research outputs found

    Discovery of Bioactive Natural Products from Marine Bacteria

    Get PDF

    Leisingera sp. JC1, a Bacterial Isolate from Hawaiian Bobtail Squid Eggs, Produces Indigoidine and Differentially Inhibits Vibrios

    Get PDF
    Female members of many cephalopod species house a bacterial consortium that is part of their reproductive system, the accessory nidamental gland (ANG). These bacteria are deposited into eggs that are then laid in the environment where they must develop unprotected from predation, pathogens and fouling. In this study, we characterized the genome and secondary metabolite production of Leisingera sp. JC1, a member of the roseobacter clade (Rhodobacteraceae) of Alphaproteobacteria isolated from the jelly coat of eggs from the Hawaiian bobtail squid, Euprymna scolopes. Whole genome sequencing and MLSA analysis revealed that Leisingera sp. JC1 falls within a group of roseobacters associated with squid ANGs. Genome and biochemical analyses revealed the potential for and production of a number of secondary metabolites, including siderophores and acyl-homoserine lactones involved with quorum sensing. The complete biosynthetic gene cluster for the pigment indigoidine was detected in the genome and mass spectrometry confirmed the production of this compound. Furthermore, we investigated the production of indigoidine under co-culture conditions with Vibrio fischeri, the light organ symbiont of E. scolopes, and with other vibrios. Finally, both Leisingera sp. JC1 and secondary metabolite extracts of this strain had differential antimicrobial activity against a number of marine vibrios, suggesting that Leisingera sp. JC1 may play a role in host defense against other marine bacteria either in the eggs and/or ANG. These data also suggest that indigoidine may be partially, but not wholly, responsible for the antimicrobial activity of this squid-associated bacterium.

    Developing the MAR databases – Augmenting Genomic Versatility of Sequenced Marine Microbiota

    Get PDF
    This thesis introduces the MAR databases as marine-specific resources in the genomic landscape. Paper 1 describes the curation effort and development leading to the MAR databases being created. It results in the highly valued reference database MarRef, the broader MarDB, and the marine gene catalog MarCat. Definition of a marine environment, the curation process, and the Marine Metagenomics Portal as a public web-service are described. It facilitates scientists to find marine sequence data for prokaryotes and to explore rich contextual information, secondary metabolites, updated taxonomy, and helps in evaluating genome quality. Many of these database advancements are covered in Paper 2. This includes new entries and development of specific databases on marine fungi (MarFun) and salmon related prokaryotes (SalDB). With the implementation of metagenome assembled and single amplified genomes it leads up to the database quality evaluation discussed in Paper 3. The lack of quality control in primary databases is here discussed based on estimated completeness and contamination in the genomes of the MAR databases. Paper 4 explores the microbiota of skin and gut mucosa of Atlantic salmon. By using a database dependent amplicon analysis, the full-length 16 rRNA gene proved accurate, but not a game-changer in taxonomic classification for this environmental niche. The proportion of dataset sequences lacking clear taxonomic classification suggests lack of diversity in current-day databases and inadequate phylogenetic resolution. Advancing phylogenetic resolution was the subject of Paper 5. Here the highly similar species of genus Aliivibrio became delineated using six genes in a multilocus sequence analysis. Five potentially novel species could in this way be delineated, which coincided with recent genome-wide taxonomy listings. Thus, Paper 4 and 5 parallel those of the MAR databases by providing insight into the inter-relational framework of bioinformatic analysis and marine database sources

    Coral reef symbioses under a changing climate: an integrative approach

    Get PDF
    Emma Marangon explored coral reef holobiont responses to future climate through an integrative approach. She found that parental exposure to climate stressors can influence the offspring microbiome, and host-symbiont nutrient recycling is a key player in the stability of coral reef symbioses. Her research deepens our understanding of complex symbiotic interactions, providing important insights for targeting future reef intervention strategies
    • …
    corecore