2,043 research outputs found

    Circuits and Systems Advances in Near Threshold Computing

    Get PDF
    Modern society is witnessing a sea change in ubiquitous computing, in which people have embraced computing systems as an indispensable part of day-to-day existence. Computation, storage, and communication abilities of smartphones, for example, have undergone monumental changes over the past decade. However, global emphasis on creating and sustaining green environments is leading to a rapid and ongoing proliferation of edge computing systems and applications. As a broad spectrum of healthcare, home, and transport applications shift to the edge of the network, near-threshold computing (NTC) is emerging as one of the promising low-power computing platforms. An NTC device sets its supply voltage close to its threshold voltage, dramatically reducing the energy consumption. Despite showing substantial promise in terms of energy efficiency, NTC is yet to see widescale commercial adoption. This is because circuits and systems operating with NTC suffer from several problems, including increased sensitivity to process variation, reliability problems, performance degradation, and security vulnerabilities, to name a few. To realize its potential, we need designs, techniques, and solutions to overcome these challenges associated with NTC circuits and systems. The readers of this book will be able to familiarize themselves with recent advances in electronics systems, focusing on near-threshold computing

    Fine-grained Energy and Thermal Management using Real-time Power Sensors

    Get PDF
    With extensive use of battery powered devices such as smartphones, laptops an

    A Robust Analog VLSI Reichardt Motion Sensor

    Get PDF
    Silicon imagers with integrated motion-detection circuitry have been developed and tested for the past 15 years. Many previous circuits estimate motion by identifying and tracking spatial or temporal features. These approaches are prone to failure at low SNR conditions, where feature detection becomes unreliable. An alternate approach to motion detection is an intensity-based spatiotemporal correlation algorithm, such as the one proposed by Hassenstein and Reichardt in 1956 to explain aspects of insect vision. We implemented a Reichardt motion sensor with integrated photodetectors in a standard CMOS process. Our circuit operates at sub-microwatt power levels, the lowest reported for any motion sensor. We measure the effects of device mismatch on these parallel, analog circuits to show they are suitable for constructing 2-D VLSI arrays. Traditional correlation-based sensors suffer from strong contrast dependence. We introduce a circuit architecture that lessens this dependence. We also demonstrate robust performance of our sensor to complex stimuli in the presence of spatial and temporal noise

    A design concept for radiation hardened RADFET readout system for space applications

    Get PDF
    Instruments for measuring the absorbed dose and dose rate under radiation exposure, known as radiation dosimeters, are indispensable in space missions. They are composed of radiation sensors that generate current or voltage response when exposed to ionizing radiation, and processing electronics for computing the absorbed dose and dose rate. Among a wide range of existing radiation sensors, the Radiation Sensitive Field Effect Transistors (RADFETs) have unique advantages for absorbed dose measurement, and a proven record of successful exploitation in space missions. It has been shown that the RADFETs may be also used for the dose rate monitoring. In that regard, we propose a unique design concept that supports the simultaneous operation of a single RADFET as absorbed dose and dose rate monitor. This enables to reduce the cost of implementation, since the need for other types of radiation sensors can be minimized or eliminated. For processing the RADFET's response we propose a readout system composed of analog signal conditioner (ASC) and a self-adaptive multiprocessing system-on-chip (MPSoC). The soft error rate of MPSoC is monitored in real time with embedded sensors, allowing the autonomous switching between three operating modes (high-performance, de-stress and fault-tolerant), according to the application requirements and radiation conditions

    Dynamic Thermal Management for Microprocessors

    Get PDF
    In deep submicron era, thermal hot spots and large temperature gradients significantly impact system reliability, performance, cost and leakage power. Dynamic thermal management techniques are designed to tackle the problems and control the chip temperature as well as power consumption. They refer to those techniques which enable the chip to autonomously modify the task execution and power dissipation characteristics so that lower-cost cooling solutions could be adopted while still guaranteeing safe temperature regulation. As long as the temperature is regulated, the system reliability can be improved, leakage power can be reduced and cooling system lifetime can be extended significantly. Multimedia applications are expected to form the largest portion of workload in general purpose PC and portable devices. The ever-increasing computation intensity of multimedia applications elevates the processor temperature and consequently impairs the reliability and performance of the system. In this thesis, we propose to perform dynamic thermal management using reinforcement learning algorithm for multimedia applications. The presented learning model does not need any prior knowledge of the workload information or the system thermal and power characteristics. It learns the temperature change and workload switching patterns by observing the temperature sensor and event counters on the processor, and finds the management policy that provides good performance-thermal tradeoff during the runtime. As the system complexity increases, it is more and more difficult to perform thermal management in a centralized manner because of state explosion and the overhead of monitoring the entire chip. In this thesis, we present a framework for distributed thermal management in many-core systems where balanced thermal profile can be achieved by proactive task migration among neighboring cores. The framework has a low cost agent residing in each core that observes the local workload and temperature and communicates with its nearest neighbor for task migration and exchange. By choosing only those migration requests that will result in balanced workload without generating thermal emergency, the presented framework maintains workload balance across the system and avoids unnecessary migration. Experimental results show that, our distributed management policy achieves almost the same performance as a global management policy when the tasks are initially randomly distributed. Compared with existing proactive task migration technique, our approach generates less hotspot, less migration overhead with negligible performance overhead. Temperature affects the leakage power and cooling power. In this thesis, we address the impact of task allocation on a processor\u27s leakage power and cooling fan power. Although the leakage power is determined by the average die temperature and the fan power is determined by the peak temperature, our analysis shows that the overall power can be minimized if a task allocation with minimum peak temperature is adopted together with an intelligent fan speed adjustment technique that finds the optimal tradeoff between fan power and leakage power. We further present a multi-agent distributed task migration technique that searches for the best task allocation during runtime. By choosing only those migration requests that will result chip maximum temperature reduction, the presented framework achieves large fan power savings as well as overall power reduction

    Thermal Tracking and Estimation for Microprocessors

    Get PDF
    Due to increasing integration density and operating frequency of today's high performance processors, the temperature of a typical chip can easily exceed 100 degrees Celsius. However, the runtime thermal state of a chip is very hard to predict and manage due to the random nature in computing workloads, as well as the process, voltage and ambient temperature variability (together called PVT variability). The uneven nature (both in time and space) of the heat dissipation of the chip could lead to severe reliability issues and error-prone chip behavior (e.g. timing errors). Many dynamic power/thermal management techniques have been proposed to address this issue such as dynamic voltage and frequency scaling (DVFS), clock gating and etc. However, most of such techniques require accurate knowledge of the runtime thermal state of the chip to make efficient and effective control decisions. In this work we address the problem of tracking and managing the temperature of microprocessors which include the following sub-problems: (1) how to design an efficient sensor-based thermal tracking system on a given design that could provide accurate real-time temperature feedback; (2) what statistical techniques could be used to estimate the full-chip thermal profile based on very limited (and possibly noise-corrupted) sensor observations; (3) how do we adapt to changes in the underlying system's behavior, since such changes could impact the accuracy of our thermal estimation. The thermal tracking methodology proposed in this work is enabled by on-chip sensors which are already implemented in many modern processors. We first investigate the underlying relationship between heat distribution and power consumption, then we introduce an accurate thermal model for the chip system. Based on this model, we characterize the temperature correlation that exists among different chip modules and explore statistical approaches (such as those based on Kalman filter) that could utilize such correlation to estimate the accurate chip-level thermal profiles in real time. Such estimation is performed based on limited sensor information because sensors are usually resource constrained and noise-corrupted. We also took a further step to extend the standard Kalman filter approach to account for (1) nonlinear effects such as leakage-temperature interdependency and (2) varying statistical characteristics in the underlying system model. The proposed thermal tracking infrastructure and estimation algorithms could consistently generate accurate thermal estimates even when the system is switching among workloads that have very distinct characteristics. Through experiments, our approaches have demonstrated promising results with much higher accuracy compared to existing approaches. Such results can be used to ensure thermal reliability and improve the effectiveness of dynamic thermal management techniques
    • …
    corecore