198 research outputs found

    Improved decoder metrics for DS-CDMA in practical 3G systems

    Get PDF
    While 4G mobile networks have been deployed since 2008. In several of the more developed markets, 3G mobile networks are still growing with 3G having the largest market -in terms of number of users- by 2019. 3G networks are based on Direct- Sequence Code-Division Multiple-Access (DS-CDMA). DS-CDMA suffers mainly from the Multiple Access Interference (MAI) and fading. Multi-User Detectors (MUDs) and Error Correcting Codes (ECCs) are the primary means to combat MAI and fading. MUDs, however, suffer from high complexity, including most of sub-optimal algorithms. Hence, most commercial implementations still use conventional single-user matched filter detectors. This thesis proposes improved channel decoder metrics for enhancing uplink performance in 3G systems. The basic idea is to model the MAI as conditionally Gaussian, instead of Gaussian, conditioned on the users’ cross-correlations and/or the channel fading coefficients. The conditioning implies a time-dependent variance that provides enhanced reliability estimates at the decoder inputs. We derive improved log-likelihood ratios (ILLRs) for bit- and chip- asynchronous multipath fading channels. We show that while utilizing knowledge of all users’ code sequences for the ILLR metric is very complicated in chip-asynchronous reception, a simplified expression relying on truncated group delay results in negligible performance loss. We also derive an expression for the error probability using the standard Gaussian approximation for asynchronous channels for the widely used raised cosine pule shaping. Our study framework considers practical 3G systems, with finite interleaving, correlated multipath fading channel models, practical pulse shaping, and system parameters obtained from CDMA2000 standard. Our results show that for the fully practical cellular uplink channel, the performance advantage due to ILLRs is significant and approaches 3 dB

    Performance Analysis of Multicarrier Code Division Multiple Access (MC-CDMA) Systems

    Get PDF
    A thesis presented to the faculty of the College of Science and Technology at Morehead State University in partial fulfillment of the requirements for the Degree of Master of Science by Pravinkumar Patil on August 11, 2008

    Timing and Carrier Synchronization in Wireless Communication Systems: A Survey and Classification of Research in the Last 5 Years

    Get PDF
    Timing and carrier synchronization is a fundamental requirement for any wireless communication system to work properly. Timing synchronization is the process by which a receiver node determines the correct instants of time at which to sample the incoming signal. Carrier synchronization is the process by which a receiver adapts the frequency and phase of its local carrier oscillator with those of the received signal. In this paper, we survey the literature over the last 5 years (2010–2014) and present a comprehensive literature review and classification of the recent research progress in achieving timing and carrier synchronization in single-input single-output (SISO), multiple-input multiple-output (MIMO), cooperative relaying, and multiuser/multicell interference networks. Considering both single-carrier and multi-carrier communication systems, we survey and categorize the timing and carrier synchronization techniques proposed for the different communication systems focusing on the system model assumptions for synchronization, the synchronization challenges, and the state-of-the-art synchronization solutions and their limitations. Finally, we envision some future research directions
    • …
    corecore