707 research outputs found

    Optimization of Planck/LFI on--board data handling

    Get PDF
    To asses stability against 1/f noise, the Low Frequency Instrument (LFI) onboard the Planck mission will acquire data at a rate much higher than the data rate allowed by its telemetry bandwith of 35.5 kbps. The data are processed by an onboard pipeline, followed onground by a reversing step. This paper illustrates the LFI scientific onboard processing to fit the allowed datarate. This is a lossy process tuned by using a set of 5 parameters Naver, r1, r2, q, O for each of the 44 LFI detectors. The paper quantifies the level of distortion introduced by the onboard processing, EpsilonQ, as a function of these parameters. It describes the method of optimizing the onboard processing chain. The tuning procedure is based on a optimization algorithm applied to unprocessed and uncompressed raw data provided either by simulations, prelaunch tests or data taken from LFI operating in diagnostic mode. All the needed optimization steps are performed by an automated tool, OCA2, which ends with optimized parameters and produces a set of statistical indicators, among them the compression rate Cr and EpsilonQ. For Planck/LFI the requirements are Cr = 2.4 and EpsilonQ <= 10% of the rms of the instrumental white noise. To speedup the process an analytical model is developed that is able to extract most of the relevant information on EpsilonQ and Cr as a function of the signal statistics and the processing parameters. This model will be of interest for the instrument data analysis. The method was applied during ground tests when the instrument was operating in conditions representative of flight. Optimized parameters were obtained and the performance has been verified, the required data rate of 35.5 Kbps has been achieved while keeping EpsilonQ at a level of 3.8% of white noise rms well within the requirements.Comment: 51 pages, 13 fig.s, 3 tables, pdflatex, needs JINST.csl, graphicx, txfonts, rotating; Issue 1.0 10 nov 2009; Sub. to JINST 23Jun09, Accepted 10Nov09, Pub.: 29Dec09; This is a preprint, not the final versio

    Gamma-ray spectra of the highest energy astrophysical objects

    Get PDF
    Measurement of the spectra of multiple TeV (1012 eV) astrophysical sources has now been performed by the Whipple collaboration using a 10 meter imaging atmospheric Cherenkov telescope. These sources include the Crab Nebula and active galactic nuclei Markarian 421 and Markarian 501. Comparisons amongst sources and verification of features within spectra is now possible. The TeV energy spectra of the AGN, in particular Markarian 501, are curved. This is demonstrated with high confidence. This is consistent with other observations and with theories of emission from AGN. Possible sources of systematic error are detailed and varied spectral comparisons are performed. A softening of the spectrum of the AGN Markarian 501 is detectable at very low flux levels. However, due to the small ratio of signal to noise, this cannot be demonstrated at a high confidence

    A 7.4-Bit ENOB 600 MS/s FPGA-Based Online Calibrated Slope ADC without External Components

    Get PDF
    A slope analog-to-digital converter (ADC) amenable to be fully implemented on a digital field programmable gate array (FPGA) without requiring any external active or passive components is proposed in this paper. The amplitude information, encoded in the transition times of a standard LVDS differential input—driven by the analog input and by the reference slope generated by an FPGA output buffer—is retrieved by an FPGA time-to-digital converter. Along with the ADC, a new online calibration algorithm is developed to mitigate the influence of process, voltage, and temperature variations on its performance. Measurements on an ADC prototype reveal an analog input range from 0.3 V to 1.5 V, a least significant bit (LSB) of 2.6 mV, and an effective number of bits (ENOB) of 7.4-bit at 600 MS/s. The differential nonlinearity (DNL) is in the range between −0.78 and 0.70 LSB, and the integral nonlinearity (INL) is in the range from −0.72 to 0.78 LSB

    AN ATTITUDE DETERMINATION SYSTEM WITH MEMS GYROSCOPE DRIFT COMPENSATION FOR SMALL SATELLITES

    Get PDF
    This thesis presents the design of an attitude determination system for small satellites that automatically corrects for attitude drift. Existing attitude determination systems suffer from attitude drift due to the integration of noisy rate gyro sensors used to measure the change in attitude. This attitude drift leads to a gradual loss in attitude knowledge, as error between the estimated attitude and the actual attitude increases. In this thesis a Kalman filter is used to complete sensor fusion which combines sensor observations with a projected attitude based on the dynamics of the satellite. The system proposed in this thesis also utilizes a novel sensor called the stellar gyro to correct for the drift. The stellar gyro compares star field images taken at different times to determine orientation, and works in the presence of the sun and during eclipse. This device provides a relative attitude fix that can be used to update the attitude estimate provided by the Kalman filter, effectively compensating for drift. Simulink models are developed of the hardware and algorithms to model the effectiveness of the system. The Simulink models show that the attitude determination system is highly accurate, with steady state errors of less than 1 degree
    • …
    corecore