1,824 research outputs found

    Signaling on the Continuous Spectrum of Nonlinear Optical Fiber

    Get PDF
    This paper studies different signaling techniques on the continuous spectrum (CS) of nonlinear optical fiber defined by nonlinear Fourier transform. Three different signaling techniques are proposed and analyzed based on the statistics of the noise added to CS after propagation along the nonlinear optical fiber. The proposed methods are compared in terms of error performance, distance reach, and complexity. Furthermore, the effect of chromatic dispersion on the data rate and noise in nonlinear spectral domain is investigated. It is demonstrated that, for a given sequence of CS symbols, an optimal bandwidth (or symbol rate) can be determined so that the temporal duration of the propagated signal at the end of the fiber is minimized. In effect, the required guard interval between the subsequently transmitted data packets in time is minimized and the effective data rate is significantly enhanced. Moreover, by selecting the proper signaling method and design criteria a reach distance of 7100 km is reported by only singling on the CS at a rate of 9.6 Gbps

    Comparison of direct and heterodyne detection optical intersatellite communication links

    Get PDF
    The performance of direct and heterodyne detection optical intersatellite communication links are evaluated and compared. It is shown that the performance of optical links is very sensitive to the pointing and tracking errors at the transmitter and receiver. In the presence of random pointing and tracking errors, optimal antenna gains exist that will minimize the required transmitter power. In addition to limiting the antenna gains, random pointing and tracking errors also impose a power penalty in the link budget. This power penalty is between 1.6 to 3 dB for a direct detection QPPM link, and 3 to 5 dB for a heterodyne QFSK system. For the heterodyne systems, the carrier phase noise presents another major factor of performance degradation that must be considered. In contrast, the loss due to synchronization error is small. The link budgets for direct and heterodyne detection systems are evaluated. It is shown that, for systems with large pointing and tracking errors, the link budget is dominated by the spatial tracking error, and the direct detection system shows a superior performance because it is less sensitive to the spatial tracking error. On the other hand, for systems with small pointing and tracking jitters, the antenna gains are in general limited by the launch cost, and suboptimal antenna gains are often used in practice. In which case, the heterodyne system has a slightly higher power margin because of higher receiver sensitivity

    Non-stationary photodetection shot noise in frequency combs: a signal processing perspective

    Get PDF
    Cette thèse examine le bruit de photon lors de la détection d’impulsions provenant d’un peigne de fréquences. En premier lieu, nous faisons abstraction du mécanisme physique produisant le bruit de photon, réduisant son effet à celui d’une source de bruit additif non-stationnaire (avec des statistiques variables dans le temps). Ce modèle de traitement de signal est ensuite utilisé dans l’analyse de deux expériences importantes pour l’utilisation d’un peigne de fréquence comme mécanisme de compteur de fréquence dans une horloge optique : la conversion du train d’impulsions optiques en un train d’impulsions électriques, et le battement hétérodyne entre un peigne de fréquences et un laser à onde continue. Nous démontrons en premier lieu que le bruit de photon lié à la photodétection produit principalement du bruit d’amplitude, et une quantité presque négligeable de jigue aléatoire de temps sur le signal électrique détecté. Des résultats expérimentaux viennent confirmer nos prédictions théoriques. Nous explorons ensuite les limites de ce mécanisme en considérant la physique de la photodétection, ce qui révèle un étalement du temps de transit qui peut affecter la jigue aléatoire produite par cette conversion. Dans un deuxième temps, nous démontrons que la nature pulsée du peigne de fréquences peut être utilisée pour donner un rapport signal-sur-bruit plus élevé que celui qui est prédit en considérant seulement le battement d’un seul mode du peigne avec le laser à onde continue. La première technique développée, le GATOR, rejette une grande partie du bruit de photon produit par le laser à onde continue afin d’améliorer le rapport signal-sur-bruit lorsque la puissance du peigne est faible. Avec cette technique, nous démontrons un rapport signal-sur-bruit 100 fois plus élevé que la limite en admettant l’utilisation d’un seul mode. Nous démontrons ensuite un raffinement de cette technique qui utilise le glissement de fréquence de l’impulsion optique afin d’utiliser efficacement tous les photons du peigne dans une bande passante déterminée. Cette technique nous a permis de produire un battement avec le plus grand rapport signal-sur-bruit parmi les résultats dans la littérature, 68.3 dB, obtenu en normalisant dans une bande passante commune de 100 kHz.This thesis is a study of shot noise in the photodetection of pulses from a frequency comb. We first make abstraction of the physical mechanism of shot noise to reduce its effects to that of an additive, non-stationary (meaning with time-varying statistics) noise source. This signal processing model is then used to analyze two experiments of importance for the operation of optical clockwork based on frequency combs: the conversion of the optical pulse train into an electrical pulse train by a photodetector, and the heterodyne (or beating) experiment between a frequency comb and a continuous wave laser. For the detection of the optical pulse train, we show that photodetection shot noise yields mostly amplitude noise and vanishingly low timing jitter on the electrical signal. Experimental results confirm our theoretical predictions. We then explore the limits of this jitter when considering practical photodetection physics. This reveals a transit time spread parameter that can affect the jitter produced by this conversion. Next, we turn our attention to the heterodyne experiment. We show that the pulsed nature of the frequency comb can be exploited in different schemes to yield higher signal-to-noise ratio (SNR) that is predicted by the use of the beating of a single comb mode with the continuous wave laser. The first technique that we develop, the GATOR, gates out shot noise from the continuous wave, and improves the SNR in the case of low comb power. Using this technique, we have demonstrated a factor of 100 higher SNR than the single-mode limit. We then show a further refinement of the technique which uses chirping of the optical pulse to effectively use all the available photons from the comb in a given bandwidth. This technique enabled us to produce the beating with the highest SNR reported in the literature of 68.3 dB, when normalizing to the common detection bandwidth of 100 kHz

    Development of an Intelligent Real-time Multi-Person Respiratory Illnesses Sensing System using SDR Technology

    Get PDF
    Respiration monitoring plays a vital role in human health monitoring, as it is an essential indicator of vital signs. Respiration monitoring can help determine the physiological state of the human body and provide insight into certain illnesses. Recently, non-contact respiratory illness sensing methods have drawn much attention due to user acceptance and great potential for real-world deployment. Such methods can reduce stress on healthcare facilities by providing modern digital health technologies. This digital revolution in the healthcare sector will provide inexpensive and unobstructed solutions. Non-contact respiratory illness sensing is effective as it does not require users to carry devices and avoids privacy concerns. The primary objective of this research work is to develop a system for continuous real-time sensing of respiratory illnesses. In this research work, the non-contact software-defined radio (SDR) based RF technique is exploited for respiratory illness sensing. The developed system measures respiratory activity imprints on channel state information (CSI). For this purpose, an orthogonal frequency division multiplexing (OFDM) transceiver is designed, and the developed system is tested for single-person and multi-person cases. Nine respiratory illnesses are detected and classified using machine learning algorithms (ML) with maximum accuracy of 99.7% for a single-person case. Three respiratory illnesses are detected and classified with a maximum accuracy of 93.5% and 88.4% for two- and three-person cases, respectively. The research provides an intelligent, accurate, continuous, and real-time solution for respiratory illness sensing. Furthermore, the developed system can also be deployed in office and home environments

    Advanced optical fibre communication via nonlinear Fourier transform

    Get PDF
    Optical fibre communication using the Nonlinear Fourier transform (NFT) is one of the potential solutions to tackle the so-called capacity crunch problem in long-haul optical fibre networks. The NFT transforms the nonlinear propagation of temporal signal, governed by the nonlinear Schr¨odinger equation (NLSE), into simple linear evolutions of continuous and discrete spectra in the so-called nonlinear spectral domain. These spectra and the corresponding nonlinear spectral domain, defined by the NFT, are the generalized counterparts of the linear spectrum and frequency domain defined by the ordinary Fourier transform. Using the NFT, the optical fibre channel is effectively linearised, and the basic idea is to utilize degrees of freedom in the nonlinear spectral domain for data transmission. However, many aspects of this concept require rigorous investigation due to complexity and infancy of the approach. In this thesis, the aim is to provide a comprehensive investigation of data transmission over mainly the continues spectrum (CS) and partly over of the discrete spectrum (DS) of nonlinear optical fibres. First, an optical fibre communication system is defined, in which solely the CS carries the information. A noise model in the nonlinear spectral domain is derived for such a system by asymptotic analysis as well as extensive simulations for different scenarios of practical interest. It is demonstrated that the noise added to the signal in CS is severely signal-dependent such that the effective signalling space is limited. The variance normalizing transform (VNT) is used to mathematically verify the limits of signalling spaces and also estimate the channel capacity. The numerical results predict a remarkable capacity for signalling only on the CS (e.g., 6 bits/symbol for a 2000-km link), yet it is demonstrated that the capacity saturates at high power. Next, the broadening effect of chromatic dispersion is analysed, and it is confirmed that some system parameters, such as symbol rate in the nonlinear spectral domain, can be optimized so that the required temporal guard interval between the subsequently transmitted data packets is minimized, and thus the effective data rate is significantly enhanced. Furthermore, three modified signalling techniques are proposed and analysed based on the particular statistics of the noise added to the CS. All proposed methods display improved performance in terms of error rate and reach distance. For instance, using one of the proposed techniques and optimized parameters, a 7100-km distance can be reached by signalling on the CS at a rate of 9.6 Gbps. Furthermore, the impact of polarization mode dispersion (PMD) is examined for the first time, as an inevitable impairment in long-haul optical fibre links. By semi-analytical and numerical investigation, it is demonstrated that the PMD affects the CS by causing signal-dependent phase shift and noise-like errors. It is also verified that the noise is still the dominant cause of performance degradation, yet the effect of PMD should not be neglected in the analysis of NFT-based systems. Finally, the capacity of soliton communication with amplitude modulation (part of the degrees of freedom of DS) is also estimated using VNT. For the first time, the practical constraints, such as the restricted signalling space due to limited bandwidth, are included in this capacity analysis. Furthermore, the achievable data rates are estimated by considering an appropriately defined guard time between soliton pulses. Moreover, the possibility of transmitting data on DS accompanied by an independent CS signalling is also validated, which confirms the potentials of the NFT approach for combating the capacity crunch

    ZASTOSOWANIE Q-PREPARACJI DO FILTROWANIA AMPLITUDOWEGO ZDYSKRETYZOWANEGO OBRAZU

    Get PDF
    The article was aimed at improving the amplitude filtering process of the sampled image through the use of generalized Q-preparation. The existing correlation algorithms for image preprocessing were analyzed and their advantages and disadvantages were identified. The process of amplitude filtering and the main methods of preprocessing with such filtering were considered. A method of amplitude filtering of images based on the generalized Q-transformation with the use of sum-difference preprocessing of images has been developed. The efficiency of this method was analyzed, and a variant of the scheme for the corresponding preprocessing of images was proposed. The efficiency of the method was confirmed by computer simulation.Artykuł miał na celu usprawnienie procesu filtrowania amplitudy zdyskretyzowanego obrazu za pomocą uogólnionej Q-preparacji. Przeanalizowano istniejące algorytmy korelacji do wstępnego przetwarzania obrazu i określono ich wady i zalety. Omówiono proces filtracji amplitudowej oraz główne metody wstępnego przetwarzania z taką filtracją. Opracowano metodę filtrowania amplitudowego obrazów w oparciu o uogólnioną transformację Q z wykorzystaniem wstępnego przetwarzania obrazów na podstawie różnic sumy. Przeanalizowano skuteczność tej metody i zaproponowano wariant odpowiedniego schematu wstępnego przetwarzania obrazu. Skuteczność metody została potwierdzona symulacją komputerową

    Advanced adaptive compensation system for free-space optical communications

    Get PDF
    Massive amounts of information are created daily in commercial fields like earth observation, that must be downloaded to earth ground stations in the short time of a satellite pass. Today, much of the collected information must be dropped due to lack of bandwidth, and laser downlinks can offer tenths of gigabits throughput solving this bottleneck limitation. In a down-link scenario, the performance of laser satellite communications is limited due to atmospheric turbulence, which causes fluctuations in the intensity and the phase of the received signal leading to an increase in bit error probability. In principle, a single-aperture phase-compensated receiver, based on adaptive optics, can overcome atmospheric limitations by adaptive tracking and correction of atmospherically induced aberrations. However, under strong-turbulence situations, the effectiveness of traditional adaptive optics systems is severely compromised. In such scenarios, sensor-less techniques offer robustness, hardware simplicity, and easiness of implementation and integration at a reduced cost, but the state-of-the-art approaches still require too many iterations to perform the correction, exceeding the temporal coherence of the field and thus falling behind the field evolution. This thesis proposes a new iterative AO technique for strong turbulence compensation that reduces the correction time, bridging the limitation of similar systems in lasercom applications. It is based on the standard sensor-less system design, but it additionally uses a short-exposure focal intensity image to accelerate the correction. The technique combines basic principles of Fourier optics, image processing, and quadratic signal optimization to correct the wave-front. This novel approach directly updates the phases of the most intense focal-plane speckles, maximizing the power coupled into a single-mode fiber convexly. Numerical analyses show that this method has a robust and excellent performance under very strong turbulence. Laboratory results confirm that a focal speckle pattern can be used to accelerate the iterative compensation. This technique delivers nearly twofold bandwidth reduction compared with standard methods, and sufficient signal gain and stability to allow high throughput data transmission with nearly error-free performance in emulated satellite downlink scenarios. A property highlight is the in-advance knowledge of the required number of iterations, allowing on-demand management of the loop bandwidth in different turbulent regimes. Besides remaining conceptually and technically simple, it opens a new insight to iterative solutions that may lead to the development of new methods. With further refinement, this technique can surely contribute to making possible the use of iterative solutions in laser communicationsSatélites de observación de la tierra diariamente generan gigantescas cantidades de datos que deben ser enviados a estaciones terrenas. La mayoría de la información recolectada debe desecharse debido al reducido tiempo visible de un satélite en movimiento y el limitado ancho de banda de transmisión. Enlaces ópticos pueden solucionar esta limitación ofreciendo multi-gigabit de ancho de banda. Sin embargo, el desempeño de un downlink laser está limitado por la turbulencia atmosférica, la cual induce variaciones en la intensidad y la fase de la señal recibida incrementando la probabilidad de error en los datos recibidos. En principio, un receptor basado en una apertura simple utilizando óptica adaptativa puede corregir las aberraciones de fase inducidas por la atmósfera, mejorando el canal de transmisión. Sin embargo, la eficiencia de los sistemas de óptica adaptativa tradicionales se ve seriamente reducida en situaciones de turbulencia fuerte. En tales escenarios, técnicas iterativas ofrecen mayor robustez, simplicidad de diseño e implementación, así como también facilidad de integración a un costo reducido. Desafortunadamente, dicha tecnología aún requiere demasiadas iteraciones para corregir la fase distorsionada, excediendo el tiempo de coherencia del frente de onda. Esta tesis propone una nueva técnica iterativa de óptica adaptativa capaz de reducir el tiempo de convergencia en escenarios de turbulencia fuerte. La técnica utiliza el diseño tradicional de los sistemas de corrección iterativos, agregando el uso de una imagen focal de intensidad para acelerar el proceso de corrección del campo distorsionado. En dicha técnica se combinan principios básicos de óptica de Fourier, procesamiento de imagen, y optimización cuadrática de la señal para corregir el frente de onda. De esta forma, la fase de los puntos focales de mayor intensidad (speckles) puede modificarse directamente y con ello maximizar de forma convexa la potencia acoplada en fibra. Los análisis numéricos demuestran robustez y un excelente desempeño en escenarios de turbulencia fuerte. Los resultados de laboratorio confirman que el moteado de intensidad puede utilizarse para acelerar la corrección iterativa. Esta técnica utiliza la mitad del ancho de banda requerido con la técnica tradicional, al mismo tiempo que ofrece suficiente ganancia y estabilidad de la señal para lograr enlaces ópticos con muy baja probabilidad de error. Al mismo tiempo, la técnica propuesta permite conocer con anticipación el número total de iteraciones y posibilita la administración bajo demanda del ancho de banda requerido en diferentes escenarios de turbulencia. Esta tesis ofrece una mirada diferente a los métodos iterativos, posibilitando el desarrollo de nuevos conceptos y contribuyendo al uso de soluciones iterativas en comunicaciones laser por espacio libre.Postprint (published version

    Phase noise in low-power radio communications

    Get PDF
    Thesis (Elec. E.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1996.Includes bibliographical references (leaves 99-101).by Donald C. Wilcoxson.Elec.E
    corecore