120 research outputs found

    Cramer-Rao Bounds for Joint RSS/DoA-Based Primary-User Localization in Cognitive Radio Networks

    Full text link
    Knowledge about the location of licensed primary-users (PU) could enable several key features in cognitive radio (CR) networks including improved spatio-temporal sensing, intelligent location-aware routing, as well as aiding spectrum policy enforcement. In this paper we consider the achievable accuracy of PU localization algorithms that jointly utilize received-signal-strength (RSS) and direction-of-arrival (DoA) measurements by evaluating the Cramer-Rao Bound (CRB). Previous works evaluate the CRB for RSS-only and DoA-only localization algorithms separately and assume DoA estimation error variance is a fixed constant or rather independent of RSS. We derive the CRB for joint RSS/DoA-based PU localization algorithms based on the mathematical model of DoA estimation error variance as a function of RSS, for a given CR placement. The bound is compared with practical localization algorithms and the impact of several key parameters, such as number of nodes, number of antennas and samples, channel shadowing variance and correlation distance, on the achievable accuracy are thoroughly analyzed and discussed. We also derive the closed-form asymptotic CRB for uniform random CR placement, and perform theoretical and numerical studies on the required number of CRs such that the asymptotic CRB tightly approximates the numerical integration of the CRB for a given placement.Comment: 20 pages, 11 figures, 1 table, submitted to IEEE Transactions on Wireless Communication

    Parameter selection in sparsity-driven SAR imaging

    Get PDF
    We consider a recently developed sparsity-driven synthetic aperture radar (SAR) imaging approach which can produce superresolution, feature-enhanced images. However, this regularization-based approach requires the selection of a hyper-parameter in order to generate such high-quality images. In this paper we present a number of techniques for automatically selecting the hyper-parameter involved in this problem. In particular, we propose and develop numerical procedures for the use of Stein’s unbiased risk estimation, generalized cross-validation, and L-curve techniques for automatic parameter choice. We demonstrate and compare the effectiveness of these procedures through experiments based on both simple synthetic scenes, as well as electromagnetically simulated realistic data. Our results suggest that sparsity-driven SAR imaging coupled with the proposed automatic parameter choice procedures offers significant improvements over conventional SAR imaging

    Improved Differentially Private Euclidean Distance Approximation

    Get PDF

    Some nonasymptotic results on resampling in high dimension, I: Confidence regions, II: Multiple tests

    Get PDF
    We study generalized bootstrap confidence regions for the mean of a random vector whose coordinates have an unknown dependency structure. The random vector is supposed to be either Gaussian or to have a symmetric and bounded distribution. The dimensionality of the vector can possibly be much larger than the number of observations and we focus on a nonasymptotic control of the confidence level, following ideas inspired by recent results in learning theory. We consider two approaches, the first based on a concentration principle (valid for a large class of resampling weights) and the second on a resampled quantile, specifically using Rademacher weights. Several intermediate results established in the approach based on concentration principles are of interest in their own right. We also discuss the question of accuracy when using Monte Carlo approximations of the resampled quantities.Comment: Published in at http://dx.doi.org/10.1214/08-AOS667; http://dx.doi.org/10.1214/08-AOS668 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Randomized Smoothing for Stochastic Optimization

    Full text link
    We analyze convergence rates of stochastic optimization procedures for non-smooth convex optimization problems. By combining randomized smoothing techniques with accelerated gradient methods, we obtain convergence rates of stochastic optimization procedures, both in expectation and with high probability, that have optimal dependence on the variance of the gradient estimates. To the best of our knowledge, these are the first variance-based rates for non-smooth optimization. We give several applications of our results to statistical estimation problems, and provide experimental results that demonstrate the effectiveness of the proposed algorithms. We also describe how a combination of our algorithm with recent work on decentralized optimization yields a distributed stochastic optimization algorithm that is order-optimal.Comment: 39 pages, 3 figure

    Low Complexity Regularization of Linear Inverse Problems

    Full text link
    Inverse problems and regularization theory is a central theme in contemporary signal processing, where the goal is to reconstruct an unknown signal from partial indirect, and possibly noisy, measurements of it. A now standard method for recovering the unknown signal is to solve a convex optimization problem that enforces some prior knowledge about its structure. This has proved efficient in many problems routinely encountered in imaging sciences, statistics and machine learning. This chapter delivers a review of recent advances in the field where the regularization prior promotes solutions conforming to some notion of simplicity/low-complexity. These priors encompass as popular examples sparsity and group sparsity (to capture the compressibility of natural signals and images), total variation and analysis sparsity (to promote piecewise regularity), and low-rank (as natural extension of sparsity to matrix-valued data). Our aim is to provide a unified treatment of all these regularizations under a single umbrella, namely the theory of partial smoothness. This framework is very general and accommodates all low-complexity regularizers just mentioned, as well as many others. Partial smoothness turns out to be the canonical way to encode low-dimensional models that can be linear spaces or more general smooth manifolds. This review is intended to serve as a one stop shop toward the understanding of the theoretical properties of the so-regularized solutions. It covers a large spectrum including: (i) recovery guarantees and stability to noise, both in terms of â„“2\ell^2-stability and model (manifold) identification; (ii) sensitivity analysis to perturbations of the parameters involved (in particular the observations), with applications to unbiased risk estimation ; (iii) convergence properties of the forward-backward proximal splitting scheme, that is particularly well suited to solve the corresponding large-scale regularized optimization problem

    Mathematical Foundations of Machine Learning (hybrid meeting)

    Get PDF
    Machine learning has achieved remarkable successes in various applications, but there is wide agreement that a mathematical theory for deep learning is missing. Recently, some first mathematical results have been derived in different areas such as mathematical statistics and statistical learning. Any mathematical theory of machine learning will have to combine tools from different fields such as nonparametric statistics, high-dimensional statistics, empirical process theory and approximation theory. The main objective of the workshop was to bring together leading researchers contributing to the mathematics of machine learning. A focus of the workshop was on theory for deep neural networks. Mathematically speaking, neural networks define function classes with a rich mathematical structure that are extremely difficult to analyze because of non-linearity in the parameters. Until very recently, most existing theoretical results could not cope with many of the distinctive characteristics of deep networks such as multiple hidden layers or the ReLU activation function. Other topics of the workshop are procedures for quantifying the uncertainty of machine learning methods and the mathematics of data privacy

    Modern Nonparametric Statistics: Going Beyond Asymptotic Minimax

    Get PDF
    During the years 1975-1990 a major emphasis in nonparametric estimation was put on computing the asymptotic minimax risk for many classes of functions. Modern statistical practice indicates some serious limitations of the asymptotic minimax approach and calls for some new ideas and methods which can cope with the numerous challenges brought to statisticians by modern sets of data

    On the Performance Bound of Sparse Estimation with Sensing Matrix Perturbation

    Full text link
    This paper focusses on the sparse estimation in the situation where both the the sensing matrix and the measurement vector are corrupted by additive Gaussian noises. The performance bound of sparse estimation is analyzed and discussed in depth. Two types of lower bounds, the constrained Cram\'{e}r-Rao bound (CCRB) and the Hammersley-Chapman-Robbins bound (HCRB), are discussed. It is shown that the situation with sensing matrix perturbation is more complex than the one with only measurement noise. For the CCRB, its closed-form expression is deduced. It demonstrates a gap between the maximal and nonmaximal support cases. It is also revealed that a gap lies between the CCRB and the MSE of the oracle pseudoinverse estimator, but it approaches zero asymptotically when the problem dimensions tend to infinity. For a tighter bound, the HCRB, despite of the difficulty in obtaining a simple expression for general sensing matrix, a closed-form expression in the unit sensing matrix case is derived for a qualitative study of the performance bound. It is shown that the gap between the maximal and nonmaximal cases is eliminated for the HCRB. Numerical simulations are performed to verify the theoretical results in this paper.Comment: 32 pages, 8 Figures, 1 Tabl
    • …
    corecore