76,825 research outputs found

    Modeling and Energy Optimization of LDPC Decoder Circuits with Timing Violations

    Full text link
    This paper proposes a "quasi-synchronous" design approach for signal processing circuits, in which timing violations are permitted, but without the need for a hardware compensation mechanism. The case of a low-density parity-check (LDPC) decoder is studied, and a method for accurately modeling the effect of timing violations at a high level of abstraction is presented. The error-correction performance of code ensembles is then evaluated using density evolution while taking into account the effect of timing faults. Following this, several quasi-synchronous LDPC decoder circuits based on the offset min-sum algorithm are optimized, providing a 23%-40% reduction in energy consumption or energy-delay product, while achieving the same performance and occupying the same area as conventional synchronous circuits.Comment: To appear in IEEE Transactions on Communication

    First-Passage Time and Large-Deviation Analysis for Erasure Channels with Memory

    Full text link
    This article considers the performance of digital communication systems transmitting messages over finite-state erasure channels with memory. Information bits are protected from channel erasures using error-correcting codes; successful receptions of codewords are acknowledged at the source through instantaneous feedback. The primary focus of this research is on delay-sensitive applications, codes with finite block lengths and, necessarily, non-vanishing probabilities of decoding failure. The contribution of this article is twofold. A methodology to compute the distribution of the time required to empty a buffer is introduced. Based on this distribution, the mean hitting time to an empty queue and delay-violation probabilities for specific thresholds can be computed explicitly. The proposed techniques apply to situations where the transmit buffer contains a predetermined number of information bits at the onset of the data transfer. Furthermore, as additional performance criteria, large deviation principles are obtained for the empirical mean service time and the average packet-transmission time associated with the communication process. This rigorous framework yields a pragmatic methodology to select code rate and block length for the communication unit as functions of the service requirements. Examples motivated by practical systems are provided to further illustrate the applicability of these techniques.Comment: To appear in IEEE Transactions on Information Theor

    Statistical mechanics of error exponents for error-correcting codes

    Full text link
    Error exponents characterize the exponential decay, when increasing message length, of the probability of error of many error-correcting codes. To tackle the long standing problem of computing them exactly, we introduce a general, thermodynamic, formalism that we illustrate with maximum-likelihood decoding of low-density parity-check (LDPC) codes on the binary erasure channel (BEC) and the binary symmetric channel (BSC). In this formalism, we apply the cavity method for large deviations to derive expressions for both the average and typical error exponents, which differ by the procedure used to select the codes from specified ensembles. When decreasing the noise intensity, we find that two phase transitions take place, at two different levels: a glass to ferromagnetic transition in the space of codewords, and a paramagnetic to glass transition in the space of codes.Comment: 32 pages, 13 figure

    Throughput Analysis of Buffer-Constrained Wireless Systems in the Finite Blocklength Regime

    Get PDF
    In this paper, wireless systems operating under queueing constraints in the form of limitations on the buffer violation probabilities are considered. The throughput under such constraints is captured by the effective capacity formulation. It is assumed that finite blocklength codes are employed for transmission. Under this assumption, a recent result on the channel coding rate in the finite blocklength regime is incorporated into the analysis and the throughput achieved with such codes in the presence of queueing constraints and decoding errors is identified. Performance of different transmission strategies (e.g., variable-rate, variable-power, and fixed-rate transmissions) is studied. Interactions between the throughput, queueing constraints, coding blocklength, decoding error probabilities, and signal-to-noise ratio are investigated and several conclusions with important practical implications are drawn
    • …
    corecore