445 research outputs found

    Using Channel Output Feedback to Increase Throughput in Hybrid-ARQ

    Full text link
    Hybrid-ARQ protocols have become common in many packet transmission systems due to their incorporation in various standards. Hybrid-ARQ combines the normal automatic repeat request (ARQ) method with error correction codes to increase reliability and throughput. In this paper, we look at improving upon this performance using feedback information from the receiver, in particular, using a powerful forward error correction (FEC) code in conjunction with a proposed linear feedback code for the Rayleigh block fading channels. The new hybrid-ARQ scheme is initially developed for full received packet feedback in a point-to-point link. It is then extended to various different multiple-antenna scenarios (MISO/MIMO) with varying amounts of packet feedback information. Simulations illustrate gains in throughput.Comment: 30 page

    On the Performance of the Relay-ARQ Networks

    Full text link
    This paper investigates the performance of relay networks in the presence of hybrid automatic repeat request (ARQ) feedback and adaptive power allocation. The throughput and the outage probability of different hybrid ARQ protocols are studied for independent and spatially-correlated fading channels. The results are obtained for the cases where there is a sum power constraint on the source and the relay or when each of the source and the relay are power-limited individually. With adaptive power allocation, the results demonstrate the efficiency of relay-ARQ techniques in different conditions.Comment: Accepted for publication in IEEE Trans. Veh. Technol. 201

    Optimal Control of a Single Queue with Retransmissions: Delay-Dropping Tradeoffs

    Full text link
    A single queue incorporating a retransmission protocol is investigated, assuming that the sequence of per effort success probabilities in the Automatic Retransmission reQuest (ARQ) chain is a priori defined and no channel state information at the transmitter is available. A Markov Decision Problem with an average cost criterion is formulated where the possible actions are to either continue the retransmission process of an erroneous packet at the next time slot or to drop the packet and move on to the next packet awaiting for transmission. The cost per slot is a linear combination of the current queue length and a penalty term in case dropping is chosen as action. The investigation seeks policies that provide the best possible average packet delay-dropping trade-off for Quality of Service guarantees. An optimal deterministic stationary policy is shown to exist, several structural properties of which are obtained. Based on that, a class of suboptimal -policies is introduced. These suggest that it is almost optimal to use a K-truncated ARQ protocol as long as the queue length is lower than L, else send all packets in one shot. The work concludes with an evaluation of the optimal delay-dropping tradeoff using dynamic programming and a comparison between the optimal and suboptimal policies.Comment: 29 pages, 8 figures, submitted to IEEE Transactions on Wireless Communication

    Green Communication via Power-optimized HARQ Protocols

    Get PDF
    Recently, efficient use of energy has become an essential research topic for green communication. This paper studies the effect of optimal power controllers on the performance of delay-sensitive communication setups utilizing hybrid automatic repeat request (HARQ). The results are obtained for repetition time diversity (RTD) and incremental redundancy (INR) HARQ protocols. In all cases, the optimal power allocation, minimizing the outage-limited average transmission power, is obtained under both continuous and bursting communication models. Also, we investigate the system throughput in different conditions. The results indicate that the power efficiency is increased substantially, if adaptive power allocation is utilized. For instance, assume Rayleigh-fading channel, a maximum of two (re)transmission rounds with rates {1,12}\{1,\frac{1}{2}\} nats-per-channel-use and an outage probability constraint 10−3{10}^{-3}. Then, compared to uniform power allocation, optimal power allocation in RTD reduces the average power by 9 and 11 dB in the bursting and continuous communication models, respectively. In INR, these values are obtained to be 8 and 9 dB, respectively.Comment: Accepted for publication on IEEE Transactions on Vehicular Technolog

    A Rate-Compatible Sphere-Packing Analysis of Feedback Coding with Limited Retransmissions

    Full text link
    Recent work by Polyanskiy et al. and Chen et al. has excited new interest in using feedback to approach capacity with low latency. Polyanskiy showed that feedback identifying the first symbol at which decoding is successful allows capacity to be approached with surprisingly low latency. This paper uses Chen's rate-compatible sphere-packing (RCSP) analysis to study what happens when symbols must be transmitted in packets, as with a traditional hybrid ARQ system, and limited to relatively few (six or fewer) incremental transmissions. Numerical optimizations find the series of progressively growing cumulative block lengths that enable RCSP to approach capacity with the minimum possible latency. RCSP analysis shows that five incremental transmissions are sufficient to achieve 92% of capacity with an average block length of fewer than 101 symbols on the AWGN channel with SNR of 2.0 dB. The RCSP analysis provides a decoding error trajectory that specifies the decoding error rate for each cumulative block length. Though RCSP is an idealization, an example tail-biting convolutional code matches the RCSP decoding error trajectory and achieves 91% of capacity with an average block length of 102 symbols on the AWGN channel with SNR of 2.0 dB. We also show how RCSP analysis can be used in cases where packets have deadlines associated with them (leading to an outage probability).Comment: To be published at the 2012 IEEE International Symposium on Information Theory, Cambridge, MA, USA. Updated to incorporate reviewers' comments and add new figure

    Wireless Network Control with Privacy Using Hybrid ARQ

    Full text link
    We consider the problem of resource allocation in a wireless cellular network, in which nodes have both open and private information to be transmitted to the base station over block fading uplink channels. We develop a cross-layer solution, based on hybrid ARQ transmission with incremental redundancy. We provide a scheme that combines power control, flow control, and scheduling in order to maximize a global utility function, subject to the stability of the data queues, an average power constraint, and a constraint on the privacy outage probability. Our scheme is based on the assumption that each node has an estimate of its uplink channel gain at each block, while only the distribution of the cross channel gains is available. We prove that our scheme achieves a utility, arbitrarily close to the maximum achievable utility given the available channel state information
    • …
    corecore