33,526 research outputs found

    The Dynamic Phase Transition for Decoding Algorithms

    Full text link
    The state-of-the-art error correcting codes are based on large random constructions (random graphs, random permutations, ...) and are decoded by linear-time iterative algorithms. Because of these features, they are remarkable examples of diluted mean-field spin glasses, both from the static and from the dynamic points of view. We analyze the behavior of decoding algorithms using the mapping onto statistical-physics models. This allows to understand the intrinsic (i.e. algorithm independent) features of this behavior.Comment: 40 pages, 29 eps figure

    Simulation of networks of spiking neurons: A review of tools and strategies

    Full text link
    We review different aspects of the simulation of spiking neural networks. We start by reviewing the different types of simulation strategies and algorithms that are currently implemented. We next review the precision of those simulation strategies, in particular in cases where plasticity depends on the exact timing of the spikes. We overview different simulators and simulation environments presently available (restricted to those freely available, open source and documented). For each simulation tool, its advantages and pitfalls are reviewed, with an aim to allow the reader to identify which simulator is appropriate for a given task. Finally, we provide a series of benchmark simulations of different types of networks of spiking neurons, including Hodgkin-Huxley type, integrate-and-fire models, interacting with current-based or conductance-based synapses, using clock-driven or event-driven integration strategies. The same set of models are implemented on the different simulators, and the codes are made available. The ultimate goal of this review is to provide a resource to facilitate identifying the appropriate integration strategy and simulation tool to use for a given modeling problem related to spiking neural networks.Comment: 49 pages, 24 figures, 1 table; review article, Journal of Computational Neuroscience, in press (2007

    Plan Selection in Medicare Part D: Evidence from administrative Data

    Get PDF
    We study the Medicare Part D prescription drug insurance program as a bellwether for designs of private, non-mandatory health insurance markets, focusing on the ability of consumers to evaluate and optimize their choices of plans. Our analysis of administrative data on medical claims in Medicare Part D suggests that less than 10 percent of individuals enroll in plans that are ex post optimal with respect to total cost (premiums and co-payments). Relative to the benchmark of a static decision rule, similar to the Plan Finder provided by the Medicare administration, that conditions next year’s plan choice only on the drugs consumed in the current year, enrollees lost on average about $300 per year. These numbers are hard to reconcile with decision costs alone; it appears that unless a sizeable fraction of consumers value plan features other than cost, they are not optimizing effectively

    Gossip Algorithms for Distributed Signal Processing

    Full text link
    Gossip algorithms are attractive for in-network processing in sensor networks because they do not require any specialized routing, there is no bottleneck or single point of failure, and they are robust to unreliable wireless network conditions. Recently, there has been a surge of activity in the computer science, control, signal processing, and information theory communities, developing faster and more robust gossip algorithms and deriving theoretical performance guarantees. This article presents an overview of recent work in the area. We describe convergence rate results, which are related to the number of transmitted messages and thus the amount of energy consumed in the network for gossiping. We discuss issues related to gossiping over wireless links, including the effects of quantization and noise, and we illustrate the use of gossip algorithms for canonical signal processing tasks including distributed estimation, source localization, and compression.Comment: Submitted to Proceedings of the IEEE, 29 page
    • …
    corecore