1,589 research outputs found

    A Memristor as Multi-Bit Memory: Feasibility Analysis

    Get PDF
    The use of emerging memristor materials for advanced electrical devices such as multi-valued logic is expected to outperform today's binary logic digital technologies. We show here an example for such non-binary device with the design of a multi-bit memory. While conventional memory cells can store only 1 bit, memristors-based multi-bit cells can store more information within single device thus increasing the information storage density. Such devices can potentially utilize the non-linear resistance of memristor materials for efficient information storage. We analyze the performance of such memory devices based on their expected variations in order to determine the viability of memristor-based multi-bit memory. A design of read/write scheme and a simple model for this cell, lay grounds for full integration of memristor multi-bit memory cell

    Balanced Modulation for Nonvolatile Memories

    Get PDF
    This paper presents a practical writing/reading scheme in nonvolatile memories, called balanced modulation, for minimizing the asymmetric component of errors. The main idea is to encode data using a balanced error-correcting code. When reading information from a block, it adjusts the reading threshold such that the resulting word is also balanced or approximately balanced. Balanced modulation has suboptimal performance for any cell-level distribution and it can be easily implemented in the current systems of nonvolatile memories. Furthermore, we studied the construction of balanced error-correcting codes, in particular, balanced LDPC codes. It has very efficient encoding and decoding algorithms, and it is more efficient than prior construction of balanced error-correcting codes

    The Fourth Element: Characteristics, Modelling, and Electromagnetic Theory of the Memristor

    Get PDF
    In 2008, researchers at HP Labs published a paper in {\it Nature} reporting the realisation of a new basic circuit element that completes the missing link between charge and flux-linkage, which was postulated by Leon Chua in 1971. The HP memristor is based on a nanometer scale TiO2_2 thin-film, containing a doped region and an undoped region. Further to proposed applications of memristors in artificial biological systems and nonvolatile RAM (NVRAM), they also enable reconfigurable nanoelectronics. Moreover, memristors provide new paradigms in application specific integrated circuits (ASICs) and field programmable gate arrays (FPGAs). A significant reduction in area with an unprecedented memory capacity and device density are the potential advantages of memristors for Integrated Circuits (ICs). This work reviews the memristor and provides mathematical and SPICE models for memristors. Insight into the memristor device is given via recalling the quasi-static expansion of Maxwell's equations. We also review Chua's arguments based on electromagnetic theory.Comment: 28 pages, 14 figures, Accepted as a regular paper - the Proceedings of Royal Society
    • …
    corecore