4,037 research outputs found

    Error Free Perfect Secrecy Systems

    Full text link
    Shannon's fundamental bound for perfect secrecy says that the entropy of the secret message cannot be larger than the entropy of the secret key initially shared by the sender and the legitimate receiver. Massey gave an information theoretic proof of this result, however this proof does not require independence of the key and ciphertext. By further assuming independence, we obtain a tighter lower bound, namely that the key entropy is not less than the logarithm of the message sample size in any cipher achieving perfect secrecy, even if the source distribution is fixed. The same bound also applies to the entropy of the ciphertext. The bounds still hold if the secret message has been compressed before encryption. This paper also illustrates that the lower bound only gives the minimum size of the pre-shared secret key. When a cipher system is used multiple times, this is no longer a reasonable measure for the portion of key consumed in each round. Instead, this paper proposes and justifies a new measure for key consumption rate. The existence of a fundamental tradeoff between the expected key consumption and the number of channel uses for conveying a ciphertext is shown. Optimal and nearly optimal secure codes are designed.Comment: Submitted to the IEEE Trans. Info. Theor

    Coding Schemes for Achieving Strong Secrecy at Negligible Cost

    Full text link
    We study the problem of achieving strong secrecy over wiretap channels at negligible cost, in the sense of maintaining the overall communication rate of the same channel without secrecy constraints. Specifically, we propose and analyze two source-channel coding architectures, in which secrecy is achieved by multiplexing public and confidential messages. In both cases, our main contribution is to show that secrecy can be achieved without compromising communication rate and by requiring only randomness of asymptotically vanishing rate. Our first source-channel coding architecture relies on a modified wiretap channel code, in which randomization is performed using the output of a source code. In contrast, our second architecture relies on a standard wiretap code combined with a modified source code termed uniform compression code, in which a small shared secret seed is used to enhance the uniformity of the source code output. We carry out a detailed analysis of uniform compression codes and characterize the optimal size of the shared seed.Comment: 15 pages, two-column, 5 figures, accepted to IEEE Transactions on Information Theor

    Experimental quantum key distribution with finite-key security analysis for noisy channels

    Full text link
    In quantum key distribution implementations, each session is typically chosen long enough so that the secret key rate approaches its asymptotic limit. However, this choice may be constrained by the physical scenario, as in the perspective use with satellites, where the passage of one terminal over the other is restricted to a few minutes. Here we demonstrate experimentally the extraction of secure keys leveraging an optimal design of the prepare-and-measure scheme, according to recent finite-key theoretical tight-bounds. The experiment is performed in different channel conditions, and assuming two distinct attack models: individual attacks, or general quantum attacks. The request on the number of exchanged qubits is then obtained as a function of the key size and of the ambient quantum bit error rate. The results indicate that viable conditions for effective symmetric, and even one-time-pad, cryptography are achievable.Comment: 20 pages, 4 figure
    • …
    corecore