1,585 research outputs found

    Approximate Linear Time ML Decoding on Tail-Biting Trellises in Two Rounds

    Full text link
    A linear time approximate maximum likelihood decoding algorithm on tail-biting trellises is prsented, that requires exactly two rounds on the trellis. This is an adaptation of an algorithm proposed earlier with the advantage that it reduces the time complexity from O(mlogm) to O(m) where m is the number of nodes in the tail-biting trellis. A necessary condition for the output of the algorithm to differ from the output of the ideal ML decoder is reduced and simulation results on an AWGN channel using tail-biting rrellises for two rate 1/2 convoluational codes with memory 4 and 6 respectively are reporte

    Low Complexity Decoding for Higher Order Punctured Trellis-Coded Modulation Over Intersymbol Interference Channels

    Full text link
    Trellis-coded modulation (TCM) is a power and bandwidth efficient digital transmission scheme which offers very low structural delay of the data stream. Classical TCM uses a signal constellation of twice the cardinality compared to an uncoded transmission with one bit of redundancy per PAM symbol, i.e., application of codes with rates n1n\frac{n-1}{n} when 2n2^{n} denotes the cardinality of the signal constellation. Recently published work allows rate adjustment for TCM by means of puncturing the convolutional code (CC) on which a TCM scheme is based on. In this paper it is shown how punctured TCM-signals transmitted over intersymbol interference (ISI) channels can favorably be decoded. Significant complexity reductions at only minor performance loss can be achieved by means of reduced state sequence estimation.Comment: 4 pages, 5 figures, 3 algorithms, accepted and published at 6th International Symposium on Communications, Control, and Signal Processing (ISCCSP 2014
    corecore