3,887 research outputs found

    A Unified Coded Deep Neural Network Training Strategy Based on Generalized PolyDot Codes for Matrix Multiplication

    Full text link
    This paper has two contributions. First, we propose a novel coded matrix multiplication technique called Generalized PolyDot codes that advances on existing methods for coded matrix multiplication under storage and communication constraints. This technique uses "garbage alignment," i.e., aligning computations in coded computing that are not a part of the desired output. Generalized PolyDot codes bridge between Polynomial codes and MatDot codes, trading off between recovery threshold and communication costs. Second, we demonstrate that Generalized PolyDot can be used for training large Deep Neural Networks (DNNs) on unreliable nodes prone to soft-errors. This requires us to address three additional challenges: (i) prohibitively large overhead of coding the weight matrices in each layer of the DNN at each iteration; (ii) nonlinear operations during training, which are incompatible with linear coding; and (iii) not assuming presence of an error-free master node, requiring us to architect a fully decentralized implementation without any "single point of failure." We allow all primary DNN training steps, namely, matrix multiplication, nonlinear activation, Hadamard product, and update steps as well as the encoding/decoding to be error-prone. We consider the case of mini-batch size B=1B=1, as well as B>1B>1, leveraging coded matrix-vector products, and matrix-matrix products respectively. The problem of DNN training under soft-errors also motivates an interesting, probabilistic error model under which a real number (P,Q)(P,Q) MDS code is shown to correct PQ1P-Q-1 errors with probability 11 as compared to PQ2\lfloor \frac{P-Q}{2} \rfloor for the more conventional, adversarial error model. We also demonstrate that our proposed strategy can provide unbounded gains in error tolerance over a competing replication strategy and a preliminary MDS-code-based strategy for both these error models.Comment: Presented in part at the IEEE International Symposium on Information Theory 2018 (Submission Date: Jan 12 2018); Currently under review at the IEEE Transactions on Information Theor

    RS + LDPC-Staircase Codes for the Erasure Channel: Standards, Usage and Performance

    Get PDF
    Application-Level Forward Erasure Correction (AL-FEC) codes are a key element of telecommunication systems. They are used to recover from packet losses when retransmission are not feasible and to optimize the large scale distribution of contents. In this paper we introduce Reed-Solomon/LDPCStaircase codes, two complementary AL-FEC codes that have recently been recognized as superior to Raptor codes in the context of the 3GPP-eMBMS call for technology [1]. After a brief introduction to the codes, we explain how to design high performance codecs which is a key aspect when targeting embedded systems with limited CPU/battery capacity. Finally we present the performances of these codes in terms of erasure correction capabilities and encoding/decoding speed, taking advantage of the 3GPP-eMBMS results where they have been ranked first

    Error Correction for Index Coding With Coded Side Information

    Full text link
    Index coding is a source coding problem in which a broadcaster seeks to meet the different demands of several users, each of whom is assumed to have some prior information on the data held by the sender. If the sender knows its clients' requests and their side-information sets, then the number of packet transmissions required to satisfy all users' demands can be greatly reduced if the data is encoded before sending. The collection of side-information indices as well as the indices of the requested data is described as an instance of the index coding with side-information (ICSI) problem. The encoding function is called the index code of the instance, and the number of transmissions employed by the code is referred to as its length. The main ICSI problem is to determine the optimal length of an index code for and instance. As this number is hard to compute, bounds approximating it are sought, as are algorithms to compute efficient index codes. Two interesting generalizations of the problem that have appeared in the literature are the subject of this work. The first of these is the case of index coding with coded side information, in which linear combinations of the source data are both requested by and held as users' side-information. The second is the introduction of error-correction in the problem, in which the broadcast channel is subject to noise. In this paper we characterize the optimal length of a scalar or vector linear index code with coded side information (ICCSI) over a finite field in terms of a generalized min-rank and give bounds on this number based on constructions of random codes for an arbitrary instance. We furthermore consider the length of an optimal error correcting code for an instance of the ICCSI problem and obtain bounds on this number, both for the Hamming metric and for rank-metric errors. We describe decoding algorithms for both categories of errors
    corecore