222,956 research outputs found

    Regularized Ordinal Regression and the ordinalNet R Package

    Full text link
    Regularization techniques such as the lasso (Tibshirani 1996) and elastic net (Zou and Hastie 2005) can be used to improve regression model coefficient estimation and prediction accuracy, as well as to perform variable selection. Ordinal regression models are widely used in applications where the use of regularization could be beneficial; however, these models are not included in many popular software packages for regularized regression. We propose a coordinate descent algorithm to fit a broad class of ordinal regression models with an elastic net penalty. Furthermore, we demonstrate that each model in this class generalizes to a more flexible form, for instance to accommodate unordered categorical data. We introduce an elastic net penalty class that applies to both model forms. Additionally, this penalty can be used to shrink a non-ordinal model toward its ordinal counterpart. Finally, we introduce the R package ordinalNet, which implements the algorithm for this model class

    Approximate IPA: Trading Unbiasedness for Simplicity

    Full text link
    When Perturbation Analysis (PA) yields unbiased sensitivity estimators for expected-value performance functions in discrete event dynamic systems, it can be used for performance optimization of those functions. However, when PA is known to be unbiased, the complexity of its estimators often does not scale with the system's size. The purpose of this paper is to suggest an alternative approach to optimization which balances precision with computing efforts by trading off complicated, unbiased PA estimators for simple, biased approximate estimators. Furthermore, we provide guidelines for developing such estimators, that are largely based on the Stochastic Flow Modeling framework. We suggest that if the relative error (or bias) is not too large, then optimization algorithms such as stochastic approximation converge to a (local) minimum just like in the case where no approximation is used. We apply this approach to an example of balancing loss with buffer-cost in a finite-buffer queue, and prove a crucial upper bound on the relative error. This paper presents the initial study of the proposed approach, and we believe that if the idea gains traction then it may lead to a significant expansion of the scope of PA in optimization of discrete event systems.Comment: 8 pages, 8 figure

    Transport or Store? Synthesizing Flow-based Microfluidic Biochips using Distributed Channel Storage

    Full text link
    Flow-based microfluidic biochips have attracted much atten- tion in the EDA community due to their miniaturized size and execution efficiency. Previous research, however, still follows the traditional computing model with a dedicated storage unit, which actually becomes a bottleneck of the performance of bio- chips. In this paper, we propose the first architectural synthe- sis framework considering distributed storage constructed tem- porarily from transportation channels to cache fluid samples. Since distributed storage can be accessed more efficiently than a dedicated storage unit and channels can switch between the roles of transportation and storage easily, biochips with this dis- tributed computing architecture can achieve a higher execution efficiency even with fewer resources. Experimental results con- firm that the execution efficiency of a bioassay can be improved by up to 28% while the number of valves in the biochip can be reduced effectively.Comment: ACM/IEEE Design Automation Conference (DAC), June 201

    Implicit sampling for path integral control, Monte Carlo localization, and SLAM

    Get PDF
    The applicability and usefulness of implicit sampling in stochastic optimal control, stochastic localization, and simultaneous localization and mapping (SLAM), is explored; implicit sampling is a recently-developed variationally-enhanced sampling method. The theory is illustrated with examples, and it is found that implicit sampling is significantly more efficient than current Monte Carlo methods in test problems for all three applications
    • …
    corecore