2,430 research outputs found

    On the MISO Channel with Feedback: Can Infinitely Massive Antennas Achieve Infinite Capacity?

    Full text link
    We consider communication over a multiple-input single-output (MISO) block fading channel in the presence of an independent noiseless feedback link. We assume that the transmitter and receiver have no prior knowledge of the channel state realizations, but the transmitter and receiver can acquire the channel state information (CSIT/CSIR) via downlink training and feedback. For this channel, we show that increasing the number of transmit antennas to infinity will not achieve an infinite capacity, for a finite channel coherence length and a finite input constraint on the second or fourth moment. This insight follows from our new capacity bounds that hold for any linear and nonlinear coding strategies, and any channel training schemes. In addition to the channel capacity bounds, we also provide a characterization on the beamforming gain that is also known as array gain or power gain, at the regime with a large number of antennas.Comment: This work has been submitted to the IEEE Transactions on Information Theory. It was presented in part at ISIT201

    Optimization of Training and Feedback Overhead for Beamforming over Block Fading Channels

    Full text link
    We examine the capacity of beamforming over a single-user, multi-antenna link taking into account the overhead due to channel estimation and limited feedback of channel state information. Multi-input single-output (MISO) and multi-input multi-output (MIMO) channels are considered subject to block Rayleigh fading. Each coherence block contains LL symbols, and is spanned by TT training symbols, BB feedback bits, and the data symbols. The training symbols are used to obtain a Minimum Mean Squared Error estimate of the channel matrix. Given this estimate, the receiver selects a transmit beamforming vector from a codebook containing 2B2^B {\em i.i.d.} random vectors, and sends the corresponding BB bits back to the transmitter. We derive bounds on the beamforming capacity for MISO and MIMO channels and characterize the optimal (rate-maximizing) training and feedback overhead (TT and BB) as LL and the number of transmit antennas NtN_t both become large. The optimal NtN_t is limited by the coherence time, and increases as L/log⁑LL/\log L. For the MISO channel the optimal T/LT/L and B/LB/L (fractional overhead due to training and feedback) are asymptotically the same, and tend to zero at the rate 1/log⁑Nt1/\log N_t. For the MIMO channel the optimal feedback overhead B/LB/L tends to zero faster (as 1/log⁑2Nt1/\log^2 N_t).Comment: accepted for IEEE Trans. Info. Theory, 201

    Very Low-Rate Variable-Length Channel Quantization for Minimum Outage Probability

    Full text link
    We identify a practical vector quantizer design problem where any fixed-length quantizer (FLQ) yields non-zero distortion at any finite rate, while there is a variable-length quantizer (VLQ) that can achieve zero distortion with arbitrarily low rate. The problem arises in a tΓ—1t \times 1 multiple-antenna fading channel where we would like to minimize the channel outage probability by employing beamforming via quantized channel state information at the transmitter (CSIT). It is well-known that in such a scenario, finite-rate FLQs cannot achieve the full-CSIT (zero distortion) outage performance. We construct VLQs that can achieve the full-CSIT performance with finite rate. In particular, with PP denoting the power constraint of the transmitter, we show that the necessary and sufficient VLQ rate that guarantees the full-CSIT performance is Θ(1/P)\Theta(1/P). We also discuss several extensions (e.g. to precoding) of this result

    Event-Driven Optimal Feedback Control for Multi-Antenna Beamforming

    Full text link
    Transmit beamforming is a simple multi-antenna technique for increasing throughput and the transmission range of a wireless communication system. The required feedback of channel state information (CSI) can potentially result in excessive overhead especially for high mobility or many antennas. This work concerns efficient feedback for transmit beamforming and establishes a new approach of controlling feedback for maximizing net throughput, defined as throughput minus average feedback cost. The feedback controller using a stationary policy turns CSI feedback on/off according to the system state that comprises the channel state and transmit beamformer. Assuming channel isotropy and Markovity, the controller's state reduces to two scalars. This allows the optimal control policy to be efficiently computed using dynamic programming. Consider the perfect feedback channel free of error, where each feedback instant pays a fixed price. The corresponding optimal feedback control policy is proved to be of the threshold type. This result holds regardless of whether the controller's state space is discretized or continuous. Under the threshold-type policy, feedback is performed whenever a state variable indicating the accuracy of transmit CSI is below a threshold, which varies with channel power. The practical finite-rate feedback channel is also considered. The optimal policy for quantized feedback is proved to be also of the threshold type. The effect of CSI quantization is shown to be equivalent to an increment on the feedback price. Moreover, the increment is upper bounded by the expected logarithm of one minus the quantization error. Finally, simulation shows that feedback control increases net throughput of the conventional periodic feedback by up to 0.5 bit/s/Hz without requiring additional bandwidth or antennas.Comment: 29 pages; submitted for publicatio
    • …
    corecore