393 research outputs found

    Robust control of geared and direct-drive robotic manipulators under parameter and model uncertainties

    Get PDF
    Thesis (M.S.) University of Alaska Fairbanks, 2005The major contribution of this thesis is the design and evaluation of a chattering-free sliding mode controller (SMC), which is a novel application for 2 degree-of-freedom (DOF) planar robot arms exposed to load variations. The performance of the SMC is evaluated in comparison to a proportional-derivative-plus (PD+) controller, as an example of nonlinear model-based controllers, as well as classical linear controllers, such as proportional-derivative (PD) and proportional-integral-derivative (PID). The performance of all four methods has been tested via realistic and detailed simulation models developed for both geared and direct-drive type 2-DOF planar robot arms. The model used in simulations reflects the dynamics of the arm, as well as the actuator dynamics and pulse width modulation (PWM) switching of the power converters. Simulations are performed under unknown load variations for both step and sinusoidal type reference joint trajectories. The results demonstrate that the chattering-free SMC provides increased accuracy and robustness than that of the other controllers and requires no prior knowledge of the system dynamic model and the load variation that the end-effector is subjected to. The results obtained could be extended to the control of a variety of geared and direct-drive type robotic configurations.Introduction -- Modeling of 2-DOF planar elbow manipulator -- Control of 2-DOF planar elbow manipulator -- Simulation results -- Conclusions and future work -- References -- Appendix

    Development of Motion Control Systems for Hydraulically Actuated Cranes with Hanging Loads

    Get PDF
    Automation has been used in industrial processes for several decades to increase efficiency and safety. Tasks that are either dull, dangerous, or dirty can often be performed by machines in a reliable manner. This may provide a reduced risk to human life, and will typically give a lower economic cost. Industrial robots are a prime example of this, and have seen extensive use in the automotive industry and manufacturing plants. While these machines have been employed in a wide variety of industries, heavy duty lifting and handling equipment such as hydraulic cranes have typically been manually operated. This provides an opportunity to investigate and develop control systems to push lifting equipment towards the same level of automation found in the aforementioned industries. The use of winches and hanging loads on cranes give a set of challenges not typically found on robots, which requires careful consideration of both the safety aspect and precision of the pendulum-like motion. Another difference from industrial robots is the type of actuation systems used. While robots use electric motors, the cranes discussed in this thesis use hydraulic cylinders. As such, the dynamics of the machines and the control system designmay differ significantly. In addition, hydraulic cranes may experience significant deflection when lifting heavy loads, arising from both structural flexibility and the compressibility of the hydraulic fluid. The work presented in this thesis focuses on motion control of hydraulically actuated cranes. Motion control is an important topic when developing automation systems, as moving from one position to another is a common requirement for automated lifting operations. A novel path controller operating in actuator space is developed, which takes advantage of the load-independent flow control valves typically found on hydraulically actuated cranes. By operating in actuator space the motion of each cylinder is inherently minimized. To counteract the pendulum-like motion of the hanging payload, a novel anti-swing controller is developed and experimentally verified. The anti-swing controller is able to suppress the motion from the hanging load to increase safety and precision. To tackle the challenges associated with the flexibility of the crane, a deflection compensator is developed and experimentally verified. The deflection compensator is able to counteract both the static deflection due to gravity and dynamic de ection due to motion. Further, the topic of adaptive feedforward control of pressure compensated cylinders has been investigated. A novel adaptive differential controller has been developed and experimentally verified, which adapts to system uncertainties in both directions of motion. Finally, the use of electro-hydrostatic actuators for motion control of cranes has been investigated using numerical time domain simulations. A novel concept is proposed and investigated using simulations.publishedVersio

    Adaptive Neural Network Feedforward Control for Dynamically Substructured Systems

    Get PDF
    (c) 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works

    Adaptive Control

    Get PDF
    Adaptive control has been a remarkable field for industrial and academic research since 1950s. Since more and more adaptive algorithms are applied in various control applications, it is becoming very important for practical implementation. As it can be confirmed from the increasing number of conferences and journals on adaptive control topics, it is certain that the adaptive control is a significant guidance for technology development.The authors the chapters in this book are professionals in their areas and their recent research results are presented in this book which will also provide new ideas for improved performance of various control application problems

    Mathematical model for adaptive control system of ASEA robot at Kennedy Space Center

    Get PDF
    The dynamic properties and the mathematical model for the adaptive control of the robotic system presently under investigation at Robotic Application and Development Laboratory at Kennedy Space Center are discussed. NASA is currently investigating the use of robotic manipulators for mating and demating of fuel lines to the Space Shuttle Vehicle prior to launch. The Robotic system used as a testbed for this purpose is an ASEA IRB-90 industrial robot with adaptive control capabilities. The system was tested and it's performance with respect to stability was improved by using an analogue force controller. The objective of this research project is to determine the mathematical model of the system operating under force feedback control with varying dynamic internal perturbation in order to provide continuous stable operation under variable load conditions. A series of lumped parameter models are developed. The models include some effects of robot structural dynamics, sensor compliance, and workpiece dynamics

    Robotic contour tracking with adaptive feedforward control by fuzzy online tuning

    Get PDF
    Industrial robots have great importance in manufacturing. Typical uses of the robots are welding, painting, deburring, grinding, polishing and shape recovery. Most of these tasks such as grinding, deburring need force control to achieve high performance. These tasks involve contour following. Contour following is a challenging task because in many of applications the geometry physical of the targeted contour are unknown. In addition to that, achieving tasks as polishing, grinding and deburring requires small force and velocity tracking errors. In order to accomplish these tasks, disturbances have to be taken account. In this thesis the aim is to achieve contour tracking with using fuzzy online tuning. The fuzzy method is proposed in this thesis to adjust a feedforward force control parameter. In this technique, the varying feedforward control parameter compensates for disturbance effects. The method employs the chattering of control signal and the normal force and tangential velocity errors to adjust the control term. Simulations with the model of a direct drive planar elbow manipulator are used to last proposed technique

    Advances in PID Control

    Get PDF
    Since the foundation and up to the current state-of-the-art in control engineering, the problems of PID control steadily attract great attention of numerous researchers and remain inexhaustible source of new ideas for process of control system design and industrial applications. PID control effectiveness is usually caused by the nature of dynamical processes, conditioned that the majority of the industrial dynamical processes are well described by simple dynamic model of the first or second order. The efficacy of PID controllers vastly falls in case of complicated dynamics, nonlinearities, and varying parameters of the plant. This gives a pulse to further researches in the field of PID control. Consequently, the problems of advanced PID control system design methodologies, rules of adaptive PID control, self-tuning procedures, and particularly robustness and transient performance for nonlinear systems, still remain as the areas of the lively interests for many scientists and researchers at the present time. The recent research results presented in this book provide new ideas for improved performance of PID control applications

    Development of Novel Compound Controllers to Reduce Chattering of Sliding Mode Control

    Get PDF
    The robotics and dynamic systems constantly encountered with disturbances such as micro electro mechanical systems (MEMS) gyroscope under disturbances result in mechanical coupling terms between two axes, friction forces in exoskeleton robot joints, and unmodelled dynamics of robot manipulator. Sliding mode control (SMC) is a robust controller. The main drawback of the sliding mode controller is that it produces high-frequency control signals, which leads to chattering. The research objective is to reduce chattering, improve robustness, and increase trajectory tracking of SMC. In this research, we developed controllers for three different dynamic systems: (i) MEMS, (ii) an Exoskeleton type robot, and (iii) a 2 DOF robot manipulator. We proposed three sliding mode control methods such as robust sliding mode control (RSMC), new sliding mode control (NSMC), and fractional sliding mode control (FSMC). These controllers were applied on MEMS gyroscope, Exoskeleton robot, and robot manipulator. The performance of the three proposed sliding mode controllers was compared with conventional sliding mode control (CSMC). The simulation results verified that FSMC exhibits better performance in chattering reduction, faster convergence, finite-time convergence, robustness, and trajectory tracking compared to RSMC, CSMC, and NSFC. Also, the tracking performance of NSMC was compared with CSMC experimentally, which demonstrated better performance of the NSMC controller

    Modelling and control of lightweight underwater vehicle-manipulator systems

    Get PDF
    This thesis studies the mathematical description and the low-level control structures for underwater robotic systems performing motion and interaction tasks. The main focus is on the study of lightweight underwater-vehicle manipulator systems. A description of the dynamic and hydrodynamic modelling of the underwater vehicle-manipulator system (UVMS) is presented and a study of the coupling effects between the vehicle and manipulator is given. Through simulation results it is shown that the vehicle’s capabilities are degraded by the motion of the manipulator, when it has a considerable mass with respect to the vehicle. Understanding the interaction effects between the two subsystems is beneficial in developing new control architectures that can improve the performance of the system. A control strategy is proposed for reducing the coupling effects between the two subsystems when motion tasks are required. The method is developed based on the mathematical model of the UVMS and the estimated interaction effects. Simulation results show the validity of the proposed control structure even in the presence of uncertainties in the dynamic model. The problem of autonomous interaction with the underwater environment is further addressed. The thesis proposes a parallel position/force control structure for lightweight underwater vehicle-manipulator systems. Two different strategies for integrating this control law on the vehicle-manipulator structure are proposed. The first strategy uses the parallel control law for the manipulator while a different control law, the Proportional Integral Limited control structure, is used for the vehicle. The second strategy treats the underwater vehicle-manipulator system as a single system and the parallel position/force law is used for the overall system. The low level parallel position/force control law is validated through practical experiments using the HDT-MK3-M electric manipulator. The Proportional Integral Limited control structure is tested using a 5 degrees-of-freedom underwater vehicle in a wave-tank facility. Furthermore, an adaptive tuning method based on interaction theory is proposed for adjusting the gains of the controller. The experimental results show that the method is advantageous as it decreases the complexity of the manual tuning otherwise required and reduces the energy consumption. The main objectives of this thesis are to understand and accurately represent the behaviour of an underwater vehiclemanipulator system, to evaluate this system when in contact with the environment and to design informed low-level control structures based on the observations made through the mathematical study of the system. The concepts presented in this thesis are not restricted to only vehicle-manipulator systems but can be applied to different other multibody robotic systems

    (Adaptive) computed torque control of (flexible) robot systems

    Get PDF
    • …
    corecore