58,018 research outputs found

    The impact of local masses and inertias on the dynamic modelling of flexible manipulators

    Get PDF
    After a brief review of the recent literature dealing with flexible multi-body modelling for control design purpose, the paper first describes three different techniques used to build up the dynamic model of SECAFLEX, a 2 d.o.f. flexible in-plane manipulator driven by geared DC motors : introduction of local fictitious springs, use of a basis of assumed Euler-Bernouilli cantilever-free modes and of 5th order polynomial modes. This last technique allows to take easily into account local masses and inertias, which appear important in real-life experiments. Transformation of the state space models obtained in a common modal basis allows a quantitative comparison of the results obtained, while Bode plots of the various interesting transfer functions relating input torques to output in-joint and tip mea-surements give rather qualitative results. A parametric study of the effect of angular configuration changes and physical parameter modifications (including the effect of rotor inertia) shows that the three techniques give similar results up to the first flexible modes of each link when concentrated masses and inertias are present. From the control point of view, “pathological” cases are exhibited : uncertainty in the phase of the non-colocated transfer functions, high dependence of the free modes in the rotor inertia value. Robustness of the control to these kinds of uncertainties appears compulsory

    Frequency response modeling and control of flexible structures: Computational methods

    Get PDF
    The dynamics of vibrations in flexible structures can be conventiently modeled in terms of frequency response models. For structural control such models capture the distributed parameter dynamics of the elastic structural response as an irrational transfer function. For most flexible structures arising in aerospace applications the irrational transfer functions which arise are of a special class of pseudo-meromorphic functions which have only a finite number of right half place poles. Computational algorithms are demonstrated for design of multiloop control laws for such models based on optimal Wiener-Hopf control of the frequency responses. The algorithms employ a sampled-data representation of irrational transfer functions which is particularly attractive for numerical computation. One key algorithm for the solution of the optimal control problem is the spectral factorization of an irrational transfer function. The basis for the spectral factorization algorithm is highlighted together with associated computational issues arising in optimal regulator design. Options for implementation of wide band vibration control for flexible structures based on the sampled-data frequency response models is also highlighted. A simple flexible structure control example is considered to demonstrate the combined frequency response modeling and control algorithms

    Controlling flexible structures with second order actuator dynamics

    Get PDF
    The control of flexible structures for those systems with actuators that are modeled by second order dynamics is examined. Two modeling approaches are investigated. First a stability and performance analysis is performed using a low order finite dimensional model of the structure. Secondly, a continuum model of the flexible structure to be controlled, coupled with lumped parameter second order dynamic models of the actuators performing the control is used. This model is appropriate in the modeling of the control of a flexible panel by proof-mass actuators as well as other beam, plate and shell like structural numbers. The model is verified with experimental measurements

    Systems identification technology development for large space systems

    Get PDF
    A methodology for synthesizinng systems identification, both parameter and state, estimation and related control schemes for flexible aerospace structures is developed with emphasis on the Maypole hoop column antenna as a real world application. Modeling studies of the Maypole cable hoop membrane type antenna are conducted using a transfer matrix numerical analysis approach. This methodology was chosen as particularly well suited for handling a large number of antenna configurations of a generic type. A dedicated transfer matrix analysis, both by virtue of its specialization and the inherently easy compartmentalization of the formulation and numerical procedures, is significantly more efficient not only in computer time required but, more importantly, in the time needed to review and interpret the results

    The reduced order model problem in distributed parameter systems adaptive identification and control

    Get PDF
    The basic assumption that a large space structure can be decoupled preceding the application of reduced order active control was considered and alternative solutions to the control of such structures (in contrast to the strict modal control) were investigated. The transfer function matrix from the actuators to the sensors was deemed to be a reasonable candidate. More refined models from multivariable systems theory were studied and recent results in the multivariable control field were compared with respect to theoretical deficiencies and likely problems in application to large space structures

    Multi-variable port Hamiltonian model of piezoelectric material

    Get PDF
    In this paper, the dynamics of a piezoelectric material is presented within the new framework of multi-variable distributed port Hamiltonian systems. This class of infinite dimensional system is quite general, thus allowing the description of several physical phenomena, such as heat conduction, elasticity, electromagnetism and, of course, piezoelectricity. The key point is the generalization of the notion of finite dimensional Dirac structure in order to deal with an infinite dimensional space of power variables. In this way, the dynamics of the system results from the interconnection of a proper set of elements, each of them characterized by a particular energetic behavior, while the interaction with the environment is described in terms of mechanical and electrical boundary ports

    Adaptive identification and control of structural dynamics systems using recursive lattice filters

    Get PDF
    A new approach for adaptive identification and control of structural dynamic systems by using least squares lattice filters thar are widely used in the signal processing area is presented. Testing procedures for interfacing the lattice filter identification methods and modal control method for stable closed loop adaptive control are presented. The methods are illustrated for a free-free beam and for a complex flexible grid, with the basic control objective being vibration suppression. The approach is validated by using both simulations and experimental facilities available at the Langley Research Center

    Synthesis of electrical networks interconnecting PZT actuators to damp mechanical vibrations

    Full text link
    This paper proves that it is possible to damp mechanical vibrations of some beam frames by means of piezoelectric actuators interconnected via passive networks. We create a kind of electromechanical wave guide where the electrical velocity group equals the mechanical one thus enabling an electromechanical energy transfer. Numerical simulations are presented which prove the technical feasibility of proposed deviceComment: International Symposium on Applied Electromagnetics and Mechanics in honor of Professor K.Miya, Tokyo: 2000. 9 page

    Catastrophe Models for Cognitive Workload and Fatigue

    Get PDF
    We reconceptualised several problems concerning the measurement of cognitive workload – fixed versus variable limits on channel capacity, work volume versus time pressure, adaptive strategies, resources demanded by tasks when performed simultaneously, and unclear distinctions between workload and fatigue effects – as two cusp catastrophe models: buckling stress resulting from acute workload, and fatigue resulting from extended engagement. Experimental participants completed a task that was intensive on non-verbal episodic memory and had an automatically speeded component. For buckling stress, the epoch of maximum (speeded) performance was the asymmetry parameter; however, anxiety did not contribute to bifurcation as expected. For fatigue, the bifurcation factor was the total work accomplished, and arithmetic, a compensatory ability, was the asymmetry parameter; R2 for the cusp models outperformed the linear comparison models in both cases. A research programme is outlined that revolves around the two models with different types of task and resource configurations

    Approximation techniques for parameter estimation and feedback control for distributed models of large flexible structures

    Get PDF
    Approximation ideas are discussed that can be used in parameter estimation and feedback control for Euler-Bernoulli models of elastic systems. Focusing on parameter estimation problems, ways by which one can obtain convergence results for cubic spline based schemes for hybrid models involving an elastic cantilevered beam with tip mass and base acceleration are outlined. Sample numerical findings are also presented
    corecore