805 research outputs found

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era

    An Evolutionary Optimization Algorithm for Automated Classical Machine Learning

    Get PDF
    Machine learning is an evolving branch of computational algorithms that allow computers to learn from experiences, make predictions, and solve different problems without being explicitly programmed. However, building a useful machine learning model is a challenging process, requiring human expertise to perform various proper tasks and ensure that the machine learning\u27s primary objective --determining the best and most predictive model-- is achieved. These tasks include pre-processing, feature selection, and model selection. Many machine learning models developed by experts are designed manually and by trial and error. In other words, even experts need the time and resources to create good predictive machine learning models. The idea of automated machine learning (AutoML) is to automate a machine learning pipeline to release the burden of substantial development costs and manual processes. The algorithms leveraged in these systems have different hyper-parameters. On the other hand, different input datasets have various features. In both cases, the final performance of the model is closely related to the final selected configuration of features and hyper-parameters. That is why they are considered as crucial tasks in the AutoML. The challenges regarding the computationally expensive nature of tuning hyper-parameters and optimally selecting features create significant opportunities for filling the research gaps in the AutoML field. This dissertation explores how to select the features and tune the hyper-parameters of conventional machine learning algorithms efficiently and automatically. To address the challenges in the AutoML area, novel algorithms for hyper-parameter tuning and feature selection are proposed. The hyper-parameter tuning algorithm aims to provide the optimal set of hyper-parameters in three conventional machine learning models (Random Forest, XGBoost and Support Vector Machine) to obtain best scores regarding performance. On the other hand, the feature selection algorithm looks for the optimal subset of features to achieve the highest performance. Afterward, a hybrid framework is designed for both hyper-parameter tuning and feature selection. The proposed framework can discover close to the optimal configuration of features and hyper-parameters. The proposed framework includes the following components: (1) an automatic feature selection component based on artificial bee colony algorithms and machine learning training, and (2) an automatic hyper-parameter tuning component based on artificial bee colony algorithms and machine learning training for faster training and convergence of the learning models. The whole framework has been evaluated using four real-world datasets in different applications. This framework is an attempt to alleviate the challenges of hyper-parameter tuning and feature selection by using efficient algorithms. However, distributed processing, distributed learning, parallel computing, and other big data solutions are not taken into consideration in this framework

    A survey of swarm intelligence for dynamic optimization: algorithms and applications

    Get PDF
    Swarm intelligence (SI) algorithms, including ant colony optimization, particle swarm optimization, bee-inspired algorithms, bacterial foraging optimization, firefly algorithms, fish swarm optimization and many more, have been proven to be good methods to address difficult optimization problems under stationary environments. Most SI algorithms have been developed to address stationary optimization problems and hence, they can converge on the (near-) optimum solution efficiently. However, many real-world problems have a dynamic environment that changes over time. For such dynamic optimization problems (DOPs), it is difficult for a conventional SI algorithm to track the changing optimum once the algorithm has converged on a solution. In the last two decades, there has been a growing interest of addressing DOPs using SI algorithms due to their adaptation capabilities. This paper presents a broad review on SI dynamic optimization (SIDO) focused on several classes of problems, such as discrete, continuous, constrained, multi-objective and classification problems, and real-world applications. In addition, this paper focuses on the enhancement strategies integrated in SI algorithms to address dynamic changes, the performance measurements and benchmark generators used in SIDO. Finally, some considerations about future directions in the subject are given

    Email Filtering Using Hybrid Feature Selection Model

    Get PDF

    Swarm Intelligence

    Get PDF
    Swarm Intelligence has emerged as one of the most studied artificial intelligence branches during the last decade, constituting the fastest growing stream in the bio-inspired computation community. A clear trend can be deduced analyzing some of the most renowned scientific databases available, showing that the interest aroused by this branch has increased at a notable pace in the last years. This book describes the prominent theories and recent developments of Swarm Intelligence methods, and their application in all fields covered by engineering. This book unleashes a great opportunity for researchers, lecturers, and practitioners interested in Swarm Intelligence, optimization problems, and artificial intelligence

    Population-based algorithms for improved history matching and uncertainty quantification of Petroleum reservoirs

    Get PDF
    In modern field management practices, there are two important steps that shed light on a multimillion dollar investment. The first step is history matching where the simulation model is calibrated to reproduce the historical observations from the field. In this inverse problem, different geological and petrophysical properties may provide equally good history matches. Such diverse models are likely to show different production behaviors in future. This ties the history matching with the second step, uncertainty quantification of predictions. Multiple history matched models are essential for a realistic uncertainty estimate of the future field behavior. These two steps facilitate decision making and have a direct impact on technical and financial performance of oil and gas companies. Population-based optimization algorithms have been recently enjoyed growing popularity for solving engineering problems. Population-based systems work with a group of individuals that cooperate and communicate to accomplish a task that is normally beyond the capabilities of each individual. These individuals are deployed with the aim to solve the problem with maximum efficiency. This thesis introduces the application of two novel population-based algorithms for history matching and uncertainty quantification of petroleum reservoir models. Ant colony optimization and differential evolution algorithms are used to search the space of parameters to find multiple history matched models and, using a Bayesian framework, the posterior probability of the models are evaluated for prediction of reservoir performance. It is demonstrated that by bringing latest developments in computer science such as ant colony, differential evolution and multiobjective optimization, we can improve the history matching and uncertainty quantification frameworks. This thesis provides insights into performance of these algorithms in history matching and prediction and develops an understanding of their tuning parameters. The research also brings a comparative study of these methods with a benchmark technique called Neighbourhood Algorithms. This comparison reveals the superiority of the proposed methodologies in various areas such as computational efficiency and match quality

    Power System Stability Analysis using Neural Network

    Full text link
    This work focuses on the design of modern power system controllers for automatic voltage regulators (AVR) and the applications of machine learning (ML) algorithms to correctly classify the stability of the IEEE 14 bus system. The LQG controller performs the best time domain characteristics compared to PID and LQG, while the sensor and amplifier gain is changed in a dynamic passion. After that, the IEEE 14 bus system is modeled, and contingency scenarios are simulated in the System Modelica Dymola environment. Application of the Monte Carlo principle with modified Poissons probability distribution principle is reviewed from the literature that reduces the total contingency from 1000k to 20k. The damping ratio of the contingency is then extracted, pre-processed, and fed to ML algorithms, such as logistic regression, support vector machine, decision trees, random forests, Naive Bayes, and k-nearest neighbor. A neural network (NN) of one, two, three, five, seven, and ten hidden layers with 25%, 50%, 75%, and 100% data size is considered to observe and compare the prediction time, accuracy, precision, and recall value. At lower data size, 25%, in the neural network with two-hidden layers and a single hidden layer, the accuracy becomes 95.70% and 97.38%, respectively. Increasing the hidden layer of NN beyond a second does not increase the overall score and takes a much longer prediction time; thus could be discarded for similar analysis. Moreover, when five, seven, and ten hidden layers are used, the F1 score reduces. However, in practical scenarios, where the data set contains more features and a variety of classes, higher data size is required for NN for proper training. This research will provide more insight into the damping ratio-based system stability prediction with traditional ML algorithms and neural networks.Comment: Masters Thesis Dissertatio
    • 

    corecore