244 research outputs found

    Evolutionary and variable step size strategies for multichannel filtered-x affine projection algorithms

    Full text link
    This study is focused on the necessity to improve the performance of the affine projection (AP) algorithm for active noise control (ANC) applications. The proposed algorithms are evaluated regarding their steady-state behaviour, their convergence speed and their computational complexity. To this end, different strategies recently applied to the AP for channel identification are proposed for multichannel ANC. These strategies are based either on a variable step size, an evolving projection order, or the combination of both strategies. The developed efficient versions of the AP algorithm use the modified filtered-x structure, which exhibits faster convergence than other filtering schemes. Simulation results show that the proposed approaches exhibit better performance than the conventional AP algorithm and represent a meaningful choice for practical multichannel ANC applications.This work was supported by a grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-ID-PCE-2011-3-0097, Spanish Ministerio de Ciencia e Innovacion TEC2009-13741 and Generalitat Valenciana PROMETEO 2009/2013.Gonzalez, A.; Albu, F.; Ferrer Contreras, M.; Diego Antón, MD. (2013). Evolutionary and variable step size strategies for multichannel filtered-x affine projection algorithms. IET Signal Processing. 7(6):471-476. https://doi.org/10.1049/iet-spr.2012.0213S47147676Shin, H.-C., Sayed, A. H., & Song, W.-J. (2004). Variable Step-Size NLMS and Affine Projection Algorithms. IEEE Signal Processing Letters, 11(2), 132-135. doi:10.1109/lsp.2003.821722Paleologu, C., Benesty, J., & Ciochina, S. (2008). A Variable Step-Size Affine Projection Algorithm Designed for Acoustic Echo Cancellation. IEEE Transactions on Audio, Speech, and Language Processing, 16(8), 1466-1478. doi:10.1109/tasl.2008.2002980Shin, H.-C., & Sayed, A. H. (2004). Mean-Square Performance of a Family of Affine Projection Algorithms. IEEE Transactions on Signal Processing, 52(1), 90-102. doi:10.1109/tsp.2003.820077Kong, S.-J., Hwang, K.-Y., & Song, W.-J. (2007). An Affine Projection Algorithm With Dynamic Selection of Input Vectors. IEEE Signal Processing Letters, 14(8), 529-532. doi:10.1109/lsp.2007.891325Seong-Eun Kim, Se-Jin Kong, & Woo-Jin Song. (2009). An Affine Projection Algorithm With Evolving Order. IEEE Signal Processing Letters, 16(11), 937-940. doi:10.1109/lsp.2009.2027638Kim, K.-H., Choi, Y.-S., Kim, S.-E., & Song, W.-J. (2011). An Affine Projection Algorithm With Periodically Evolved Update Interval. IEEE Transactions on Circuits and Systems II: Express Briefs, 58(11), 763-767. doi:10.1109/tcsii.2011.2168023Bouchard, M. (2003). Multichannel affine and fast affine projection algorithms for active noise control and acoustic equalization systems. IEEE Transactions on Speech and Audio Processing, 11(1), 54-60. doi:10.1109/tsa.2002.805642Kong, N., Shin, J., & Park, P. (2011). A two-stage affine projection algorithm with mean-square-error-matching step-sizes. Signal Processing, 91(11), 2639-2646. doi:10.1016/j.sigpro.2011.06.003MoonSoo Chang, NamWoong Kong, & PooGyeon Park. (2010). An Affine Projection Algorithm Based on Reuse Time of Input Vectors. IEEE Signal Processing Letters, 17(8), 750-753. doi:10.1109/lsp.2010.2053355Arablouei, R., & Doğançay, K. (2012). Affine projection algorithm with selective projections. Signal Processing, 92(9), 2253-2263. doi:10.1016/j.sigpro.2012.02.018Gonzalez, A., Ferrer, M., de Diego, M., & Piñero, G. (2012). An affine projection algorithm with variable step size and projection order. Digital Signal Processing, 22(4), 586-592. doi:10.1016/j.dsp.2012.03.00

    Underdetermined-order recursive least-squares adaptive filtering: The concept and algorithms

    No full text
    Published versio

    Adaptive filters for sparse system identification

    Get PDF
    Sparse system identification has attracted much attention in the field of adaptive algorithms, and the adaptive filters for sparse system identification are studied. Firstly, a new family of proportionate normalized least mean square (PNLMS) adaptive algorithms that improve the performance of identifying block-sparse systems is proposed. The main proposed algorithm, called block-sparse PNLMS (BS-PNLMS), is based on the optimization of a mixed ℓ2,1 norm of the adaptive filter\u27s coefficients. A block-sparse improved PNLMS (BS-IPNLMS) is also derived for both sparse and dispersive impulse responses. Meanwhile, the proposed block-sparse proportionate idea has been extended to both the proportionate affine projection algorithm (PAPA) and the proportionate affine projection sign algorithm (PAPSA). Secondly, a generalized scheme for a family of proportionate algorithms is also presented based on convex optimization. Then a novel low-complexity reweighted PAPA is derived from this generalized scheme which could achieve both better performance and lower complexity than previous ones. The sparseness of the channel is taken into account to improve the performance for dispersive system identification. Meanwhile, the memory of the filter\u27s coefficients is combined with row action projections (RAP) to significantly reduce the computational complexity. Finally, two variable step-size zero-point attracting projection (VSS-ZAP) algorithms for sparse system identification are proposed. The proposed VSS-ZAPs are based on the approximations of the difference between the sparseness measure of current filter coefficients and the real channel, which could gain lower steady-state misalignment and also track the change in the sparse system --Abstract, page iv
    corecore