2,599 research outputs found

    Total order in opportunistic networks

    Get PDF
    Opportunistic network applications are usually assumed to work only with unordered immutable messages, like photos, videos, or music files, while applications that depend on ordered or mutable messages, like chat or shared contents editing applications, are ignored. In this paper, we examine how total ordering can be achieved in an opportunistic network. By leveraging on existing dissemination and causal order algorithms, we propose a commutative replicated data type algorithm on the basis of Logoot for achieving total order without using tombstones in opportunistic networks where message delivery is not guaranteed by the routing layer. Our algorithm is designed to use the nature of the opportunistic network to reduce the metadata size compared to the original Logoot, and even to achieve in some cases higher hit rates compared to the dissemination algorithms when no order is enforced. Finally, we present the results of the experiments for the new algorithm by using an opportunistic network emulator, mobility traces, and Wikipedia pages.Peer ReviewedPostprint (author's final draft

    Temporal Networks

    Full text link
    A great variety of systems in nature, society and technology -- from the web of sexual contacts to the Internet, from the nervous system to power grids -- can be modeled as graphs of vertices coupled by edges. The network structure, describing how the graph is wired, helps us understand, predict and optimize the behavior of dynamical systems. In many cases, however, the edges are not continuously active. As an example, in networks of communication via email, text messages, or phone calls, edges represent sequences of instantaneous or practically instantaneous contacts. In some cases, edges are active for non-negligible periods of time: e.g., the proximity patterns of inpatients at hospitals can be represented by a graph where an edge between two individuals is on throughout the time they are at the same ward. Like network topology, the temporal structure of edge activations can affect dynamics of systems interacting through the network, from disease contagion on the network of patients to information diffusion over an e-mail network. In this review, we present the emergent field of temporal networks, and discuss methods for analyzing topological and temporal structure and models for elucidating their relation to the behavior of dynamical systems. In the light of traditional network theory, one can see this framework as moving the information of when things happen from the dynamical system on the network, to the network itself. Since fundamental properties, such as the transitivity of edges, do not necessarily hold in temporal networks, many of these methods need to be quite different from those for static networks

    Opinion Behavior Analysis in Social Networks Under the Influence of Coopetitive Media

    Get PDF
    Both interpersonal communication and media contact are important information sources and play a significant role in shaping public opinions of large populations. In this paper, we investigate how the opinion-forming process evolves over social networks under the media influence. In addition to being affected by the opinions of their connected peers, the media cooperate and/or compete mutually with each other. Networks with mixed cooperative and competitive interactions are said to be coopetitive . In this endeavor, a novel mathematical model of opinion dynamics is introduced, which captures the information diffusion process under consideration, makes use of the community-based network structure, and takes into account personalized biases among individuals in social networks. By employing port-Hamiltonian system theory to analyze the modeled opinion dynamics, we predict how public opinions evolve in the long run through social entities and find applications in political strategy science. A key technical observation is that as a result of the port-Hamiltonian formulation, the mathematical passivity property of individuals’ self-dynamics facilitates the convergence analysis of opinion evolution. We explain how to steer public opinions towards consensus, polarity, or neutrality, and investigate how an autocratic media coalition might emerge regardless of public views. We also assess the role of interpersonal communication and media exposure, which in itself is an essential topic in mathematical sociology

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Spreading processes in Multilayer Networks

    Get PDF
    Several systems can be modeled as sets of interconnected networks or networks with multiple types of connections, here generally called multilayer networks. Spreading processes such as information propagation among users of an online social networks, or the diffusion of pathogens among individuals through their contact network, are fundamental phenomena occurring in these networks. However, while information diffusion in single networks has received considerable attention from various disciplines for over a decade, spreading processes in multilayer networks is still a young research area presenting many challenging research issues. In this paper we review the main models, results and applications of multilayer spreading processes and discuss some promising research directions.Comment: 21 pages, 3 figures, 4 table

    MediaSync: Handbook on Multimedia Synchronization

    Get PDF
    This book provides an approachable overview of the most recent advances in the fascinating field of media synchronization (mediasync), gathering contributions from the most representative and influential experts. Understanding the challenges of this field in the current multi-sensory, multi-device, and multi-protocol world is not an easy task. The book revisits the foundations of mediasync, including theoretical frameworks and models, highlights ongoing research efforts, like hybrid broadband broadcast (HBB) delivery and users' perception modeling (i.e., Quality of Experience or QoE), and paves the way for the future (e.g., towards the deployment of multi-sensory and ultra-realistic experiences). Although many advances around mediasync have been devised and deployed, this area of research is getting renewed attention to overcome remaining challenges in the next-generation (heterogeneous and ubiquitous) media ecosystem. Given the significant advances in this research area, its current relevance and the multiple disciplines it involves, the availability of a reference book on mediasync becomes necessary. This book fills the gap in this context. In particular, it addresses key aspects and reviews the most relevant contributions within the mediasync research space, from different perspectives. Mediasync: Handbook on Multimedia Synchronization is the perfect companion for scholars and practitioners that want to acquire strong knowledge about this research area, and also approach the challenges behind ensuring the best mediated experiences, by providing the adequate synchronization between the media elements that constitute these experiences
    • …
    corecore