20,981 research outputs found

    Bi-local Construction of Sp(2N)/dS Higher Spin Correspondence

    Full text link
    We derive a collective field theory of the singlet sector of the Sp(2N) sigma model. Interestingly the hamiltonian for the bilocal collective field is the same as that of the O(N) model. However, the large-N saddle points of the two models differ by a sign. This leads to a fluctuation hamiltonian with a negative quadratic term and alternating signs in the nonlinear terms which correctly reproduces the correlation functions of the singlet sector. Assuming the validity of the connection between O(N) collective fields and higher spin fields in AdS, we argue that a natural interpretation of this theory is by a double analytic continuation, leading to the dS/CFT correspondence proposed by Anninos, Hartman and Strominger. The bi-local construction gives a map into the bulk of de Sitter space-time. Its geometric pseudospin-representation provides a framework for quantization and definition of the Hilbert space. We argue that this is consistent with finite N grassmanian constraints, establishing the bi-local representation as a nonperturbative framework for quantization of Higher Spin Gravity in de Sitter space.Comment: 1 figur

    Geometric Quantization and Two Dimensional QCD

    Get PDF
    In this article, we will discuss geometric quantization of 2d QCD with fermionic and bosonic matter fields. We identify the respective large-N_c phase spaces as the infinite dimensional Grassmannian and the infinite dimensional Disc. The Hamiltonians are quadratic functions, and the resulting equations of motion for these classical systems are nonlinear. In a previous publication, the first author has shown that the linearization of the equations of motion for the Grassmannian gave the `t Hooft equation. We will see that the linearization in the bosonic case leads to the scalar analog of the `t Hooft equation found by Tomaras.Comment: 46 pages, Latex, no figure

    Conditional hitting time estimation in a nonlinear filtering model by the Brownian bridge method

    Full text link
    The model consists of a signal process XX which is a general Brownian diffusion process and an observation process YY, also a diffusion process, which is supposed to be correlated to the signal process. We suppose that the process YY is observed from time 0 to s>0s>0 at discrete times and aim to estimate, conditionally on these observations, the probability that the non-observed process XX crosses a fixed barrier after a given time t>st>s. We formulate this problem as a usual nonlinear filtering problem and use optimal quantization and Monte Carlo simulations techniques to estimate the involved quantities

    Semiclassical dynamics of domain walls in the one-dimensional Ising ferromagnet in a transverse field

    Full text link
    We investigate analytically and numerically the dynamics of domain walls in a spin chain with ferromagnetic Ising interaction and subject to an external magnetic field perpendicular to the easy magnetization axis (transverse field Ising model). The analytical results obtained within the continuum approximation and numerical simulations performed for discrete classical model are used to analyze the quantum properties of domain walls using the semiclassical approximation. We show that the domain wall spectrum shows a band structure consisting of 2SS non-intersecting zones.Comment: 15 pages, 9 figure
    • …
    corecore