5,178 research outputs found

    One-step estimator paths for concave regularization

    Full text link
    The statistics literature of the past 15 years has established many favorable properties for sparse diminishing-bias regularization: techniques which can roughly be understood as providing estimation under penalty functions spanning the range of concavity between L0L_0 and L1L_1 norms. However, lasso L1L_1-regularized estimation remains the standard tool for industrial `Big Data' applications because of its minimal computational cost and the presence of easy-to-apply rules for penalty selection. In response, this article proposes a simple new algorithm framework that requires no more computation than a lasso path: the path of one-step estimators (POSE) does L1L_1 penalized regression estimation on a grid of decreasing penalties, but adapts coefficient-specific weights to decrease as a function of the coefficient estimated in the previous path step. This provides sparse diminishing-bias regularization at no extra cost over the fastest lasso algorithms. Moreover, our `gamma lasso' implementation of POSE is accompanied by a reliable heuristic for the fit degrees of freedom, so that standard information criteria can be applied in penalty selection. We also provide novel results on the distance between weighted-L1L_1 and L0L_0 penalized predictors; this allows us to build intuition about POSE and other diminishing-bias regularization schemes. The methods and results are illustrated in extensive simulations and in application of logistic regression to evaluating the performance of hockey players.Comment: Data and code are in the gamlr package for R. Supplemental appendix is at https://github.com/TaddyLab/pose/raw/master/paper/supplemental.pd

    An update on statistical boosting in biomedicine

    Get PDF
    Statistical boosting algorithms have triggered a lot of research during the last decade. They combine a powerful machine-learning approach with classical statistical modelling, offering various practical advantages like automated variable selection and implicit regularization of effect estimates. They are extremely flexible, as the underlying base-learners (regression functions defining the type of effect for the explanatory variables) can be combined with any kind of loss function (target function to be optimized, defining the type of regression setting). In this review article, we highlight the most recent methodological developments on statistical boosting regarding variable selection, functional regression and advanced time-to-event modelling. Additionally, we provide a short overview on relevant applications of statistical boosting in biomedicine

    Variable Selection in General Multinomial Logit Models

    Get PDF
    The use of the multinomial logit model is typically restricted to applications with few predictors, because in high-dimensional settings maximum likelihood estimates tend to deteriorate. In this paper we are proposing a sparsity-inducing penalty that accounts for the special structure of multinomial models. In contrast to existing methods, it penalizes the parameters that are linked to one variable in a grouped way and thus yields variable selection instead of parameter selection. We develop a proximal gradient method that is able to efficiently compute stable estimates. In addition, the penalization is extended to the important case of predictors that vary across response categories. We apply our estimator to the modeling of party choice of voters in Germany including voter-specific variables like age and gender but also party-specific features like stance on nuclear energy and immigration

    Bayesian Regularisation in Structured Additive Regression Models for Survival Data

    Get PDF
    During recent years, penalized likelihood approaches have attracted a lot of interest both in the area of semiparametric regression and for the regularization of high-dimensional regression models. In this paper, we introduce a Bayesian formulation that allows to combine both aspects into a joint regression model with a focus on hazard regression for survival times. While Bayesian penalized splines form the basis for estimating nonparametric and flexible time-varying effects, regularization of high-dimensional covariate vectors is based on scale mixture of normals priors. This class of priors allows to keep a (conditional) Gaussian prior for regression coefficients on the predictor stage of the model but introduces suitable mixture distributions for the Gaussian variance to achieve regularization. This scale mixture property allows to device general and adaptive Markov chain Monte Carlo simulation algorithms for fitting a variety of hazard regression models. In particular, unifying algorithms based on iteratively weighted least squares proposals can be employed both for regularization and penalized semiparametric function estimation. Since sampling based estimates do no longer have the variable selection property well-known for the Lasso in frequentist analyses, we additionally consider spike and slab priors that introduce a further mixing stage that allows to separate between influential and redundant parameters. We demonstrate the different shrinkage properties with three simulation settings and apply the methods to the PBC Liver dataset
    corecore